Skip to main content Accessibility help

A novel polymer technology for underfill

  • Osamu Suzuki (a1), Toshiyuki Sato (a1), Paul Czubarow (a2) and David Son (a3)


Capillary type underfill is still the mainstream underfill for mass production flip chip applications. Flip chip packages are migrating to ultra low-k, Pb-free, 3D and fine pitch packages. Underfill selection is becoming more critical. This paper discusses the performance and potential of underfills using a novel organic-inorganic hybrid polymer technology.

Compared to eutectic and high lead solder, tin-silver-copper solder has lower C.T.E., higher elasticity and greater brittleness. In light of these properties, it is generally better to select high Tg and lower CTE underfill in order to prevent bump fatigue during reliability testing. Given the brittleness of low-k dielectric layers of flip chips, the destruction of low-k layers by stress inside the flip chip packages has become a major issue. Underfills for low-k packages should have low stress, and the warpage should be small. It is expected that as the low-k trend expands, the underfill is required to provide less stress. Low Tg underfill shows lower warpage. New chemical technologies have been developed to address the needs of underfills for low-k/Pb-free flip chip packages, specifically organic-inorganic hybrid polymer compounds. The organic-inorganic hybrid polymer provides excellent cure properties which enable a balanced combination of low stress and good bump protection. The material properties of the underfill were characterized using Differential Scanning Calorimetry (DSC), Thermo-Mechanical Analysis (TMA), and Dynamic Mechanical Analysis (DMA). A daisy-chained test vehicle was used for reliability testing. A detailed study is presented on the underfill properties, reliability data, as well as finite element modeling results.


Corresponding author



Hide All
1. Chen, K. M. et al. , “Effects of Underfill Materials on the Reliability of Low-k Flip Chip Packaging,” Microelectronics Reliability, Vol. 46, No. 1, 2006, pp.155163.
2. Paquet, Marie-Claude. et al. ,, “Underfill Selection Strategy for Pb-Free, Low-K and Fine Pitch Organic Flip Chip Applications,” Proc Electronic Components and Technology Conf, 2006, pp. 15951603.
3. Schmaltz, Brian et al. , “Underfill Design for Low-k Dielectrics & Lead Free Application,” Proc IMAPS International Conference and Exhibition on Device Packaging, Scottsdale/Fountain Hills, AZ, Mar. 2010.


A novel polymer technology for underfill

  • Osamu Suzuki (a1), Toshiyuki Sato (a1), Paul Czubarow (a2) and David Son (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed