Skip to main content Accessibility help

Novel Group V Sources for Use in Mombe

  • C. R. Abernathy (a1), D. A. Bohling (a2), G. T. Muhr (a2) and P. W. Wisk (a3)


Due to the extreme toxicity, and in the case of Sb stability, of the Group V hydrides, alternative gaseous Group V sources for III-V epitaxy are highly desirable. Trisdimethylaminoarsenic (DMAAs) has proven to be a useful replacement for AsH 3 for growth of GaAs and AlGaAs by MOMBE. This paper will discuss the P and Sb analogs to this compound, namely trisdimethylaminophosphorus (DMAP) and trisdimethylaminoantimony (DMASb). Both sources decompose readily on the growth surface. InP surfaces, for example, can be maintained with either source over a wide range, 375° - 525°C, as can GaAs, 375° - 600°C. Using DMAP, GaP can be grown at rates up to 200Å/min with slightly less carbon contamination than obtained with similar flows of PH3. When trimethylindium (TMI) is introduced, however, the DMAP does not readily decompose thus leaving In droplets on the surface. InP was successfully grown by thermally cracking the DMAP prior to injection to the chamber. The dependence of cracking efficiency and impurity uptake on cracker temperature will also be presented. DMASb was found to produce just the opposite effect, apparently preventing the adsorption of TEG, TIBG, or TMAA on the surface for sufficient time to allow growth to occur.



Hide All
1. Panish, M. B., Temkin, H., and Sumski, S., J. Vac. Sci. Technol. B3, 657 (1985).
2. Calawa, A. R., Appl. Phys. Lett. 38, 701 (1981).
3. Panish, M. B. and Sumski, S., J. Appl. Phys. 55, 3571 (1984).
4. Huet, D., Lambert, M., Bonnevie, D. and Defresne, D., J. Vac. Sci. Tech. B3, 823 (1985).
6. Panish, M. B., J. Electrochem. Soc. 127, 2729 (1980).
7. Abernathy, C. R., Wisk, P. W., Bohling, D. A., Muhr, G. T., Appl. Phys. Lett. 60, 2421 (1992).
8. Abernathy, C. R., Wisk, P. W., Pearton, S. J., Ren, F., Bohling, D. A. and Muhr, G. T., J. Crystal Growth 124, 64 (1992).
9. Musolf, J., Weyers, M., Balk, P., Zimmer, M. and Hofmann, H., J. Crystal Growth 150, 271 (1990).
10. Tsang, W. T., Appl. Phys. Lett. 45, 1234 (1984).
11. Ritter, D., Panish, M. B., Hamm, R. A., Gershoni, D. and Brener, I., Appl. Phys. Lett. 56 1448 (1990).
12. Zimmerman, G., Protzman, H., Marschner, T., Zsebok, O., Stolz, W., Gobel, E. O., Gimmnich, P., Lorberth, J., Filz, T., Kurpas, P., Richter, W., J. Cryst. Growth 129, 37 (1993).
13. Bohling, D. A., Abernathy, C. R. and Jensen, K., J. Crystal Growth, in press.
14. Asahi, H., Kaneko, T., Okuno, Y., Itani, Y., Asami, K. and Gonda, S., J. Crystal Growth 120, 252 (1992), and references therein.
15. Okuno, Y., Asahi, H., Liu, X. F., Inoue, K., Itani, Y., Asami, K, and Gonda, S., J. Crystal Growth 127, 143 (1993).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed