Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T13:59:58.936Z Has data issue: false hasContentIssue false

Novel Functionalized Ceramic Getter Materials for Adsorption of Radioiodine.

Published online by Cambridge University Press:  11 February 2011

Shas V. Mattigod
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352
Glen Fryxell
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352
Kent Parker
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352
Dan Kaplan
Affiliation:
Westinghouse Savannah River Company, Aiken, SC 29808
Get access

Abstract

A new class of getter materials has been synthesized for immobilization of long-lived radionuclides such as 129I. These novel materials consist of nanoporous ceramic substrates with tailored pore sizes ranging from 2 – 20 nm. These high surface area (∼1000 m2/g) ceramic substrates have been functionalized with self-assembled monolayers consisting of soft cation-capped thiol-functionality. The resulting getter materials exhibit highly dense binding sites, and excellent selectivity for iodide. The effectiveness of these novel getter materials was evaluated using radioiodide-spiked samples of surface water and concrete leachate and adsorption performance was compared with natural sulfide mineral getter materials. The data indicated that the novel getter materials have very high affinity for radioiodide (Kd: 4 × 104 – 3 × 105ml/g and 6 × 105 ml/g in surface and concrete leachate respectively). Comparatively, the radioiodide Kd values for natural mineral getters were typically two to three orders magnitude less than the novel getters. The results indicated that the synthetic getter materials have the potential to immobilize and therefore retard the migration of 129I in the subsurface environment. Additional studies are being conducted to evaluate thelong-term stability of these materials in waste disposal environments.

Type
articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McDowell-Boyer, L., Yu, A.D., Cook, J.R., Kocher, D.C., Wilhite, E.L., Homes-Burns, H., and Young, K.E.. WSRC-RP-94–218.Google Scholar
2. Haq, Z., Bancroft, G.M., Fyfe, W.S., Bird, G., and Lopata, V.J.. Env. Sci and Tech. 1980, 14:11061110.Google Scholar
3. Strickert, R., Friedman, A.M., and Fried, S.. Nucl. Tech. 1980, 49, 253266.Google Scholar
4. Allard, G., Torstenfelt, B., Andersson, K. and Rydberg, J.. (Mat. Res. Soc Proc, 176, Pittsburgh, PA, 1981), pp 673680.Google Scholar
5. Huie, Z., Jishu, Z. and Lanying, Z.. Radiochimica Acta. 1988, 44/45:143145.Google Scholar
6. Rancon., D. Radiochimica Acta. 1988, 88:187193.Google Scholar
7. Ikeda, Y., Sazarashi, M., Tsuji, M., and Seki, R.. Radiochimica Acta. 1994, 65:195198.Google Scholar
8. Balsley, S.D., Brady, P.V., Krumhansl, J.M., and Anderson, H.L.. Env. Sci and Tech. 1997, 30:30253027.Google Scholar
9. Balsley, S.D., Brady, P.V., Krumhansl, J.M., and Anderson, H.L.. SAND95–2978. Sandia National Laboratories, Albuquerque, NM. 1997.Google Scholar
10. Balsley, S.D. S.D., , Brady, P.V., Krumhansl, J.M., and Anderson, H.L.. J. Soil Contamination. 1998, 7: 125141.Google Scholar
11. Atkins, M. and Glasser, F.P.. (Mat. Res. Soc Proc, 176, Pittsburgh, PA, 1990), pp 1522.Google Scholar
12. Couture, R.A. and Seitz, M.G.. Nucl. Chem Waste Management 1983, 4:301–306.Google Scholar
13. Taylor, P. AECL-10163, Atomic Energy Canada Ltd., Pinawa, Canada. 1990.Google Scholar
14. Sazarashi, M., Ikeda, Y., Seki, R., and Yoshikawa, H.. J. Nucl. Sci Tech. 1994, 31:620–622.Google Scholar
15. Hakem, N., Fourest, B., Guillaumont, R., and Marmier, N.. Radiochimica Acta. 1996, 74:225–230.Google Scholar
16. Kaplan, D., D., , Serne, R.J., Parker, K.E., and Kutnyakov, I.V.. Env. Sci. and Tech. 2000, 34:399:405 Google Scholar
17. Gradev, G.D.. J Radioanal. Nucl. Chem. 1987, 116:341346.Google Scholar
18. Bors., J. Radiochimica Acta. 1990, 51:139143.Google Scholar
19. Bors., J. Radiochimica Acta 1992, 58/59, 235238.Google Scholar
20. Bors, J., Gorny, A., and Dultz, S.. Radiochimica Acta. 1994, 66/67:309313.Google Scholar
21. Bors, J., Gorny, A., and Dultz, S.. Radiochimica Acta. 1996, 4:231234.Google Scholar
22. Bors, J., Dultz, S., and Gorny, A.. Radiochimica Acta. 1998, 74:231234.Google Scholar
23. Sazarashi, M., Ikeda, Y., Seki, R., Yoshikawa, H., and Takashima, Y.. (Mat. Res. Soc Proc, 353, Pittsburgh, PA, 1995), pp 10371043.Google Scholar
24. Viani, B. B. UCRL-ID-133596. Lawrence Livermore National Laboratory, Livermore, CA. 1999.Google Scholar
25. Fryxell, G.E., Liu, J., Hauser, A.A., Nie, Z., Ferris, K.F., Mattigod, S.V., Gong, M., and Hallen, R.T.. Chem. Mat. 1999, 11:21482154.Google Scholar
26. Fryxell, G.E., Liu, J., and Mattigod, S.V.. Mat. Tech. & Adv. Perf Mat. 1999, 14:88191.Google Scholar
27. Fryxell, G.E., Liu, J., Mattigod, S.V., Wang, L.Q., Gong, M., Hauser, T.A., Lin, Y. and Ferris, K.F., and Feng, X.. (Proc 101st National Meetings of the Am. Ceramic Soc., 1999).Google Scholar
28. Kemner, K.M., Feng, X., Liu, J., Fryxell, G‥E., Wang, L.Q., Kim, A.Y., Gong, M., and Mattigod, S.V.. J. Synchrotron Rad. 1999, 6:633635.Google Scholar
29. Liu, J., Fryxell, G.E., Mattigod, S.V., Zemanian, T.S., Shin, Y., and Wang, L.Q.. Studies in Surface Science and Catalysis 2000, 129:729738.Google Scholar
30. Pourbaix, M.. Atlas of Electrochemical Equilibria in Aqueous solutions (Pergamon, Oxford, 1966).Google Scholar
31. Sposito, G., The Surface Chemistry of Soils. (Oxford University Press, New York. 1984).Google Scholar
32. Colwell, . in Subsurface Microbiology and Biogeochemistry. (Wiley-Liss, New York, 2001).Google Scholar
33. Richter, D.D., and Markewitz, D.. BioScience 1995, 45:600609.Google Scholar
34. Kieft, T.L., and Brockman, F.J.. in Subsurface Microbiology and Biogeochemistry. (Wiley-Liss, New York, 2001).Google Scholar
35. Ehrlich, H.J.. Geomicrobiology, (Marcel Dekker, New York, 1996).Google Scholar