Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T03:40:04.175Z Has data issue: false hasContentIssue false

A Novel Back-Reflecting UV-Assisted Metal-Induced Crystallization of Silicon on Glass

Published online by Cambridge University Press:  17 March 2011

Leila Rezaee
Affiliation:
Electrical and Computer Eng. Dept., University of Tehran, Tehran 14395-515, IRAN
Shamsoddin Mohajerzadeh
Affiliation:
Electrical and Computer Eng. Dept., University of Tehran, Tehran 14395-515, IRAN
Ali Khakifirooz
Affiliation:
Currently at Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.Akhaki@mtl.mit.edu
Saber Haji
Affiliation:
Electrical and Computer Eng. Dept., University of Tehran, Tehran 14395-515, IRAN
Ebrahim Asl Soleimani
Affiliation:
Electrical and Computer Eng. Dept., University of Tehran, Tehran 14395-515, IRAN
Get access

Abstract

A novel method of UV-assisted metal-induced-crystallization is introduced to grow polysilicon films on ordinary glass at temperatures as low as 400°C. Annealing is accomplished in the presence of an ultra-violet exposure, leading to high crystallinity of the silicon film as confirmed by XRD, TEM and SEM analyses. A back-reflecting chromium layer is incorporated to further trap UV photons and enhance their absorption in the silicon film. This results in a significant increase in the crystallization rate as studied by XRD spectroscopy. A growth rate of 2 µm/hr is observed at 400 °C, when employing this method for lateral crystallization. Thin-film transistors fabricated using the proposed UV-assisted MILC show a threshold voltage of 1V and hole mobility of about 50 cm2/V.s.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Noguchi, T., Tang, A. J., Tsai, J. A., Reif, R., IEEE Trans. Electron Devices 43, 1454 (1996).Google Scholar
2. Sera, K., Okumura, F., Uchi, H., Kaneko, S., Hotta, K., IEEE Trans. Electron Devices 36, 2868 (1989).Google Scholar
3. Hatalis, M. K. and Greve, D. W., J. Appl. Phys. 63, 2260 (1988).Google Scholar
4. Ihn, T. H., Lee, B.I., Kim, K. H., Joo, S.K., Int. Workshop Active-Matrix Liquid-Crystal Displays, 13 (1996).Google Scholar
5. Radnoczi, G., Robertsson, A., Hentzell, H. T. G., Gong, S. F., Hasan, M.-A., J. Appl. Phys. 69, 6394 (1991).Google Scholar
6. Bian, B., Yie, J., Li, B., Wu, Z., J. Appl. Phys. 73, 7402 (1993).10.1063/1.354032Google Scholar
7. Yoon, S. -Y., Oh, J. -Y., Kim, C. -O., Jang, J., Solid-State Comm. 106, 325 (1998).Google Scholar
8. Lee, S. -W., Jeon, Y. -C., Joo, S. -K., Appl. Phys. Lett. 66, 1671 (1995).Google Scholar
9. Lee, S. -W., Joo, S. -K., IEEE Electron Device Lett. 17, 160 (1996).Google Scholar
10. Lee, S. -W., Ihn, T. -K., Joo, S. -K., IEEE Electron Device Lett. 17, 407 (1996).Google Scholar
11. Jagar, S., Chan, M., Poon, M.C., Wang, H., Qin, M., Ko, P.K., Wang, Y., IEEE Int. Electron Device Meeting, 293 (1999).Google Scholar
12. Meng, Z., Wang, M., Wong, M., IEEE Trans. Electron Devices 47, 404 (2000).Google Scholar
13. Chan, V.W.C. and Chan, P.C.H., IEEE Electron Device Lett. 22, 80 (2001).10.1109/55.902838Google Scholar
14. Khakifirooz, A., Haji, S., Mohajerzadeh, S.S., Thin Solid Films 383, 241(2001).Google Scholar
15. Haque, M. S., Naseem, H. A., Brown, W. D., J. Appl. Phys. 79, 7529 (1996).Google Scholar
16. Bhat, G. and Wong, M., IEEE Electron Device Lett. 21, 73 (2000).Google Scholar