Skip to main content Accessibility help
×
Home

A Nonzero Gap Two-dimensional Carbon Allotrope from Porous Graphene

  • Gustavo Brunetto (a1), Bruno I. Santos (a1), Pedro A. S. Autreto (a1), Leonadro D. Machado (a1), Ricardo P. B. dos Santos (a2) and Douglas S. Galvao (a1)...

Abstract

Graphene has been one of the hottest topics in materials science in the last years. Because of its special electronic properties graphene is considered one of the most promising materials for future electronics. However, in its pristine form graphene is a gapless semiconductor, which poses some limitations to its use in some transistor electronics. Many approaches have been tried to create, in a controlled way, a gap in graphene. These approaches have obtained limited successes. Recently, hydrogenated graphene-like structures, the so-called porous graphene, have been synthesized. In this work we show, based on ab initio quantum molecular dynamics calculations, that porous graphene dehydrogenation can lead to a spontaneous formation of a nonzero gap two-dimensional carbon allotrope, called biphenylene carbon (BC). Besides exhibiting an intrinsic nonzero gap value, BC also presents well delocalized frontier orbitals, suggestive of a structure with high electronic mobility. Possible synthetic routes to obtain BC from porous graphene are addressed.

Copyright

References

Hide All
1. Peng, H., Chen, D., Huang, J., Chikkannanavar, S., Hanisch, J., Jain, M., Peterson, D., Doorn, S., Lu, Y., Zhu, Y., et al. ., Phys. Rev. Lett. 101, 145501 (2008).
2. Novoselov, , Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., , I. Grigorieva, , and Firsov, A., Science 306, 666 (2004).
3. Flores, M., Autreto, P., Legoas, S., and Galvao, D., Nanotechnology 20, 465704 (2009).
4. Cheng, S., Zou, K., Okino, F., Gutierrez, H., Gupta, A., Shen, N., Eklund, P., Sofo, J., and Zhu, J., Phys. Rev. B 81, 205435 (2010).
5. Withers, F., Dubois, M., and Savchenko, A., Phys. Rev. B 82, 73403 (2010).
6. Stankovich, S., Dikin, D., Piner, R., Kohlhaas, K., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S., and Ruoff, R., Carbon 45, 1558 (2007).
7. Gilje, S., Han, S., Wang, M., Wang, K., and Kaner, R., Nano Lett. 7, 3394 (2007).
8. Gomez-Navarro, C., Weitz, R., Bittner, A., Scolari, M., Mews, A., Burghard, M., and Kern, K., Nano Lett. 7, 3499 (2007).
9. Ruoff, R., Nature Nanotechnology 3, 10 (2008).
10. Wu, X., Sprinkle, M., Li, X., Ming, F., Berger, C., and De Heer, W., Phys. Rev. Lett. 101, 26801 (2008).
11. Kaiser, A., Gómez-Navarro, C., Sundaram, R., Burghard, M., and Kern, K., Nano Lett. 9, 1787 (2009).
12. Sofo, J., Chaudhari, A., and Barber, G., Phys. Rev. B, 75, 153401, (2007).
13. Ryu, S., Han, M., Maultzsch, J., Heinz, T., Kim, P., Steigerwald, M., and Brus, L., Nano Lett. 8, 4597 (2008).
14. Elias, D., Nair, R., Mohiuddin, T., Morozov, S., Blake, P., Halsall, M., Ferrari, A., Boukhvalov, D., Katsnelson, M., Geim, A., et al. . , Science 323, 610 (2009).
15. Leenaerts, O., Peelaers, H., Hernandez-Nieves, A., Partoens, B. and Peeters, F., Arxiv preprint arXiv:1009.3847 (2010).
16. Blankenburg, S., Bieri, M., Fasel, R., Mullen, K., Pignedoli, C. A. and Passerone, D., Small 6, 2266 (2010).
17. Du, A. J., Zhu, Z. H., and Smith, S. C., J. Am. Chem. Soc. 132, 2876 (2010).
18. Jiang, D. E., Cooper, V. R., and Dai, S., Nano Lett. 9, 4019 (2009).
19. Li, Y. F., Zhou, Z., Shen, P. W., and Chen, Z. F., Chem. Comm. 46, 3672 (2010).
20. Baughman, R., Eckhardt, H., and Kertesz, M., J. Chem. Phys. 87, 6687 (1987).
21. Baughman, R. H., Galvao, D. S., Cui, C., Wang, Y. and Tománek, D., Chem. Phys. Lett. 204, 8, (1993).
22. Enyashin, A. and Ivanovskii, A., Phys. St. Solid (b) 248, 1879 (2011).
23. Schulman, J. M. and Disch, R. L., J. Phys Chem. A 111, 10010 (2007).
24. Treier, M., Pignedoli, C., Laino, T., Rieger, R., Mullen, K., Passerone, D., and Fasel, R., Nature Chem. 3 61 (2010).
25. Otero, G., Biddau, G., Sanchez-Sanchez, C., Caillard, R., Lopez, M. F., Rogero, C., Palomares, F. J., Cabello, N., Basanta, M. A., Ortega, J., Mendez, J., Echavarren, A. M., Perez, R., Gomez-Lor, B., and Martin-Gago, J. A., Nature 454, 865 (2008).
26. Hatanaka, M., Chem. Phys. Lett. 488, 187 (2010).
27. Bieri, M., Treier, M., Cai, J., A it Mansour, K., Ruffieux, P., Groning, O., Groning, P., Kastler, M., Rieger, R., Feng, X., et al. ., Chem. Commun. 45, 6919 (2009).
28. Schrier, J., J. Phys. Chem. Lett. 1, 2284 (2010).
29. Delley, B., J. Chem. Phys. 88, 2547 (1988).
30. Delley, B., J. Chem. Phys. 113, 7756 (2000), DMol3 is available from Accelrys, Inc., as part of Materials Studio and the Cerius2 program suites http://www.accelrys.com.
31. Porezag, D., Frauenheim, T., Ohler, T. K, Seifert, G., and Kaschner, R., Phys. Rev. B 51, 12947 (1995).
32. Aradi, B., Hourahine, B., and Frauenheim, T., J. Phys. Chem. A 111, 5678 (2007).
33. Gutzleretal, R.., Chem. Commun. 4456 (2009).

Keywords

A Nonzero Gap Two-dimensional Carbon Allotrope from Porous Graphene

  • Gustavo Brunetto (a1), Bruno I. Santos (a1), Pedro A. S. Autreto (a1), Leonadro D. Machado (a1), Ricardo P. B. dos Santos (a2) and Douglas S. Galvao (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed