Skip to main content Accessibility help

Nonvolatile, Reversible Writing of Electronic Nanostructures in Epitaxial Ferroelectric / Metallic Oxide Heterostructures using a Field Effect

  • C. H. Ahn (a1), T. Tybell (a1), L. Antognazza (a1), K. Char (a2), R. H. Hammond (a3), M. R. Beasley (a3), Ø. Fischer (a1) and J.-M. Triscone (a1)...


Using scanning probe microscopy, we have written nonvolatile electronic nanofeatures in the metallic perovskite oxide SrRuO3. The structures were written in epitaxial thin film Pb(Zr0.52Ti0.48)O3 (PZT) / SrRuO3 heterostructures by locally switching the polarization field of the ferroelectric PZT layer with an atomic force microscope (AFM). The resulting field effect changes the sheet resistance of the SrRuO3 layer by up to 300 ohms per square. Using the AFM as an electric field microscope, it is also possible to visualize the charge distribution of the written areas on the PZT surface. Large areas of up to 100 μm2 have been polarized and imaged with submicrometer resolution, with the smallest features having linewidths of 170 nm. This approach to local electronic doping is reversible and allows one to write nonvolatile submicron electronic features in two dimensions without lithographic steps or permanent electrical contacts required.



Hide All
1. Ramesh, R., Inam, A., Chan, W.K., Wilkens, B., Myers, K., Remschnig, K., Hart, D.L., and Tarascon, J.M., Science 252, 944 (1991);
Eom, C.B., Van Dover, R.B., Phillips, J.M., Werder, D.J., Marshall, J.H., Chen, C.H., Cava, R.J., Fleming, R.M., Fork, D.K., Appl. Phys. Lett. 63, 2570 (1993);
Ahn, C.H., Triscone, J.-M., Archibald, N., Decroux, M., Hammond, R.H., Geballe, T.H., Fischer, Ø., and Beasley, M.R., Science 269, 373 (1995);
2. Ahn, C.H., Hammond, R.H., Geballe, T.H., Beasley, M.R., Triscone, J.-M., Decroux, M., Fischer, Ø., Antognazza, L., and Char, K., Appl. Phys. Lett. 70, 206 (1997).
3. Ahn, C.H., Tybell, T., Antognazza, L., Char, K., Hammond, R.H., Beasley, M.R., Fischer, Ø., and Triscone, J.-M., Science 276, 1100 (1997).
4. Triscone, J.-M., Frauchiger, L., Decroux, M., Miéville, L., and Fischer, Ø., Beeli, C., and Stadelmann, P., Racine, G.-A., J. Appl. Phys. 79, 4298 (1996).
5. Ahn, C.H., Klein, L., Reiner, J.W., Hammond, R.H., Geballe, T.H., Beasley, M.R., Triscone, J.-M., Decroux, M., and Fischer, Ø., submitted for publication.
6. Stern, J. E., Terris, B. D., Mamin, H. J., and Rugar, D., Appl. Phys. Lett. 53, 2717 (1988);
Saurenbach, F. and Terris, B. D., Appl. Phys. Lett. 56, 1703 (1990);
Lüthi, R., Haefke, H., Meyer, K.-P., Meyer, E., Howald, L., and Güntherodt, H.-J., J. Appl. Phys. 74, 7461 (1993);
Tybell, T., Ahn, C.H., and Triscone, J.-M., in preparation
7. The parameters necessary to polarize ferroelectric domains were established by writing an area of the film with the AFM tip while ramping the voltage applied to the tip continuously from -10 V to +10 V. The resulting phase image reveals the required coercive voltage (∼4-5 V) to polarize ferroelectric domains.
8. See, for example, Hidaka, T., Maruyama, T., Saitoh, M., Mikoshiba, N., Shimizu, M., Shiosaki, T., Wills, L.A., Hiskes, R., Dicarolis, S.A., and Amano, J., Appl. Phys. Lett. 68, 2358 (1996) and REFERENCES therein;
Zavala, G., Fendler, J.H., Trolier-McKinstry, S., J. Appl. Phys. 81, 7480(1997).
9. Tybell, T., Ahn, C.H., and Triscone, J.-M., in preparation.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed