Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T12:07:14.795Z Has data issue: false hasContentIssue false

A Non-Traditional Vapor-Liquid-Solid Method for Bulk Synthesis of Semiconductor Nanowires

Published online by Cambridge University Press:  15 March 2011

Shashank Sharma
Affiliation:
Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA
Mahendra K. Sunkara*
Affiliation:
Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA
Guoda Lian
Affiliation:
Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
Elizabeth C. Dickey
Affiliation:
Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
*
Corresponding author: mahendra@louisville.edu
Get access

Abstract

Multiple silicon nanowires were synthesized using large gallium pools and microwave plasma. Results showed that nanowires growing out of different sized large gallium drops show little variation in diameters, suggesting that our non-traditional technique can be used to synthesize bulk amounts of monodispersed nanowires out of thin films of molten gallium.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lieber, C.M., Solid State Comm 107 (11), 607616 (1998).Google Scholar
2. Wu, C., Prism 10(3), 2126 (2000).Google Scholar
3. Chung, S-W, Yu, J-Y, and Heath, J.R., Appl. Phys. Lett. 76 (15) 20682070 (2000).Google Scholar
4. Au, F.C.K. et al., Appl. Phys. Lett. 75 (12) 17001702 (1999).Google Scholar
5. Zunger, A. and Wang, L-W, Appl. Surf. Sc. 102, 350359 (1996).Google Scholar
6. Saitta, A.M., Buda, F., Fiumara, G., and Giaquinta, P.V., Phys. Rev. B 53 (3) 14461451 (1996).Google Scholar
7. Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4 (5) 89 (March 1964).Google Scholar
8. Morales, A.M. and Lieber, C.M., Science 279, 208 (1998).Google Scholar
9. Westwater, J., Gosain, D.P., Tomiya, S., Usui, S., Ruda, H., J. Vac. Sc. Technol. B 15 (3) 554 (1997).Google Scholar
10. Zhang, Y.F., Tang, Y.H., Wang, N., Yu, D.P., Lee, C.S., Bello, I., Lee, S.T., Appl. Phys. Lett. 72 (15) 1835 (1998).Google Scholar
11. Wu, Y. and Yang, P., Chem. Mater. 12, 605 (2000).Google Scholar
12. Zhang, Y.F., Tang, Y.H., Wang, N., Lee, C.S., Bello, I., and Lee, S.T., Phys. Rev. B. 61 (7) 4518 (15 February 2000).Google Scholar
13. Kukovitsky, E.F., L'vov, S.G., and Sainov, N.A., Chem. Phys. Lett. 317, 65 (2000).Google Scholar
14. Chen, X.H., Deng, F.M., Lu, X.N., Wu, G.T., Wang, M., Yang, H.S., and Zhang, X.B., J. Crystal Growth 222, 163 (2001).Google Scholar
15. T-Nga, L, Hernadi, K., and Forró, L., Adv. Mat. 13 (2) 148 (2001).Google Scholar
16. Motojima, S., Hasegawa, I., Kagiya, S., Momiyama, M., Kawaguchi, M., and Iwanaga, H., Appl. Phys. Lett. 62 (19) 2322 (10 May 1993).Google Scholar
17. Tang, Y.H., Wang, N., Zhang, Y.F., Lee, C.S., Bello, I., and Lee, S.T., Appl. Phys. Lett. 75 (19) 2921 (1999).Google Scholar
18. Duan, X., Huang, Y., Cui, Y., Wang, J., and Lieber, C.M., Nature 409, 66 (4 January 2001).Google Scholar
19. Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P., Adv. Mat. 13 (2) 113 (16 January 2001).Google Scholar
20. He, M., Minus, I., Zhou, P., Mohammed, S.N., Halpern, J.B., Jacobs, R., Sarney, W.L., Salamancha-Riba, L., and Vispute, R.D., Appl. Phys. Lett. 77 (23) 3731 (4 December 2000).Google Scholar
21. Han, W., Fan, S., Li, Q., and Hu, Y., Science 277 (5330) 1287 (1997).Google Scholar
22. Kiang, C. -H., Choi, J. -S., Tran, T. T., and Bacher, A. D., J. Phys. Chem. B 103, 7449 (1999).Google Scholar
23. Coleman, N.R.B., Morris, M.A., Spalding, T.R., and Holmes, J.D., J. Am. Chem. Soc. 123, 187188 (2001).Google Scholar
24. Scheier, P., Marsen, B., Lonfat, M., Schneider, W. -D., and Sattler, K., Surf. Sci. 458, 113 (2000).Google Scholar
25. Sunkara, M.K., Sharma, S., Miranda, R., Lian, G., and Dickey, E.C., Appl. Phys. Lett. 79 (10) 1546 (3 September 2001).Google Scholar
26. Sharma, S., Sunkara, M.K., Li, H., and Lian, G.D., Manuscript in preparation to be submitted to the Journal of Applied Physics, (November 2001).Google Scholar
27. Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J., and Lieber, C.M., Appl. Phys. Lett. 78 (15) 2214 (9 April 2001).Google Scholar
28. Imaizumi, M., Yamaguchi, K., Okitsu, K., Yamaguchi, M., Hara, T., Ito, T., Konomi, I., Jones, K.M., and Al-Jassim, M.M., J. Appl. Phys. 88 (11) 6848 (2000).Google Scholar
29. Hattangady, S.V., Fountain, G.G., Rudder, R.A., and Markunas, R.J., J. Vac. Sci. Tech. A. 7, 570 (1989).Google Scholar
30. Fantz, U., Plasma Phys. Control. Fusion 40, 1035 (1998).Google Scholar