Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T10:51:23.981Z Has data issue: false hasContentIssue false

Non-Stoichiometry and Structure of SrCe1-xYbxO3 Perovskite-Type Oxides

Published online by Cambridge University Press:  15 February 2011

Igor Kosacki
Affiliation:
Department of Ceramic Engineering, University of Missouri-Rolla, Rolla, MO 65401, USA
Mark Shumsky
Affiliation:
Department of Ceramic Engineering, University of Missouri-Rolla, Rolla, MO 65401, USA
Harlan U. Anderson
Affiliation:
Department of Ceramic Engineering, University of Missouri-Rolla, Rolla, MO 65401, USA
Get access

Abstract

The structural and electrical properties of SrCe1-xYbxO3 ceramics have been studied as a function of temperature and Yb-concentration using x-ray diffraction and impedance techniques. The influence of Yb-dopants on electrical transport and structural disorder has been studied. A correlation between the structural properties, electrical conductivity is observed and discussed. These measurements allow us to determine the mechanism of charge carrier compensation and also the concentration and mobility of the electrical species.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iwahara, H., Esaka, T., Uchida, H. and Maeda, N., Solid State Ionics ¾, 359(1981).Google Scholar
2. Kosacki, I., Becht, J.G., van Landschoot, R. and Schoonman, J., Solid State Ionics 59, 287(1993).Google Scholar
3. Reichel, U., Arnos, R.R. and Schilling, W., Solid State Ionics 86/88, 639(1996).Google Scholar
4. Kosacki, I., Tuller, H.L., Solid State Ionics 80, 223(1995).Google Scholar
5. Bonanos, N., Solid State Ionics 53/56, 967(1992).Google Scholar
6. Kosacki, I. and Anderson, H.U., Appl. Phys. Letters, 69(1996), in print.Google Scholar
7. Kosacki, I. and Anderson, H.U., Solid State Ionics, 1997, in print.Google Scholar
8. Tuller, H.L., in Ceramic Materials for Electronics, ed. Buchman, R. (Marcel Dekker, New York, 1986) pp.425473.Google Scholar
9. Tuller, H.L., Solid State Ionics 52, 135(1992).Google Scholar
10. Iwahara, H., Solid State Ionics 55, 99(1992).Google Scholar
11. Iwahara, H., in Ionic and Mixed Conducting Ceramics, eds. Ramanarayanan, T.A., Worrell, W.L. and Tuller, H.L. (The Electrochem. Soc. Pennington, NY, 1994) pp18.Google Scholar
12. Kosacki, I., Schoonman, J. and Balkanski, M., Solid State Ionics 57, 345(1992).Google Scholar
13. Iwahara, H., Ushida, H. and Tanaka, S., Solid State Ionics 9/10, 1021(1983).Google Scholar
14. Knight, K.S. and Bananos, N., Materials Research Bulletin 30, 347(1995).Google Scholar
15. Shadow Program, Materials Data Inc. Livermore CA, 1996.Google Scholar
16. Howard, S.A., Yau, J.K. and Anderson, H.U., J. Appl. Phys. 65, 1492(1989).Google Scholar
17. Taniguchi, N., Hatoh, K., Niikura, J., Gamo, T. and Iwahara, H., Solid State Ionics 53/56, 998(1992).Google Scholar
18. Scherban, T. and Nowick, A.S., Solid State Ionics 53/56, 1004(1992).Google Scholar
19. Scherban, T. and Nowick, A.S., Solid State Ionics 35(1989)189.Google Scholar
20. Larring, Y. and Norby, T., Solid State Ionics 70/71, 305(1994).Google Scholar
21. Park, J.-H. and Blumenthal, R.N., J. Electrochem. Soc. 136, 2868(1989).Google Scholar