Skip to main content Accessibility help

Nonlinear Optics of Linear Conjugated Polymers

  • D. Guo (a1), S. Mazumdar (a1), G. I. Stegeman (a2), M. Cha (a2), D. Neher (a2), S. Aramaki (a3), W. Torruellas (a4) and R. Zanoni (a5)...


The third order nonlinear optical properties of conjugated polymers have been considered promising since the 1970s when Sauteret et al reported large non-resonant values in PTS.[1] Although it is well-understood that the physical origin of the nonlinearities is due to the delocalization of the π-electrons, the details, and how best to calculate them have been the focus of a continuing theoretical dialogue. Until recently, experimental investigations of nonlinearities have been limited to only a few wavelengths. Now third harmonic generation (THG), which accesses only the electronic nonlinearities, can be performed over wide spectral ranges, for example from 500 to 2000 nm. The resulting third harmonic wavelength typically spans the electronic molecular transitions associated with the nonlinearities. By measuring the spectral distribution of both the amplitude and phase of the third harmonic signal, the dominant transitions (between the“essential states”) contributing to the nonlinearity can be identified. Such information is most useful for comparing with theories in which the oscillator strengths (transition dipole moments) for the various molecular transitions are calculated.



Hide All
1. Sauteret, C., Hermann, J. -P., Frey, R., Pradere, F., Ducuing, J., Baughman, R.H. and Chance, R. R., Phys. Rev. Lett., 36 956 (1976).
2. Torruellas, W. E., Rochford, K. B., Zanoni, R. and Stegeman, G. I., Opt. Comm., 82, 94 (1991); corrections in Stegeman, G. I., Torruellas, W., Rochford, K. B., Zanoni, R., Krug, W., Miao, E. and Beranek, M.W., Proceedings of the 1991 MRS Spring Meeting, in press
3. Torruellas, W. E., Neher, D., Zanoni, R., Stegeman, G. I., Kajzar, F., Leclerc, M., Chem. Phys. Lett., 175, 11 (1990).
4. Aramaki, S., Torruellas, W., Zanoni, R. and Stegeman, G. I., Opt. Comm., 85, 527 (1991).
5. Dixit, S. N., Guo, D. and Mazumdar, S., Phys. Rev. B 43, 6781 (1991).
6. Mazumdar, S., Guo, D. and Dixit, S. N., Proc. SPIE, Vol. 1436, 137 (1991).
7. Guo, D., Mazumdar, S. and Dixit, S. N., unpublished.
8. Yu, J., Friedman, B., Baldwin, P. R. and Su, W. P., Phys. Rev. B 39, 12814 (1989).
9. Fann, W. -S, Benson, S., Madey, J. M. J., Etemad, S., Baker, G. L. and Kajzar, F., Phys. Rev. Lett. 62, 1492 (1989).
10. Kawabe, Y., Jarka, F., Peyghamberian, N., Guo, D., Mazumdar, S., Dixit, S. N. and Kajzar, F., Phys. Rev. B, 44, 6530 (1991).
11. van Beek, J. B. and Albrecht, A. C., Chem. Phys. Lett., in press;
van Beek, J. B., Kajzar, F. and Albrecht, A. C., J. Chem. Phys., 25, 6400 (1991).
12. Hasagawa, T., Ishikawa, H., Koda, T., Takeda, K., Kobayashi, H. and Kubodera, K., Synth. Metals, 41–43, 3151 (1991).

Related content

Powered by UNSILO

Nonlinear Optics of Linear Conjugated Polymers

  • D. Guo (a1), S. Mazumdar (a1), G. I. Stegeman (a2), M. Cha (a2), D. Neher (a2), S. Aramaki (a3), W. Torruellas (a4) and R. Zanoni (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.