Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T07:08:58.741Z Has data issue: false hasContentIssue false

Nonlinear Optical Properties of Buckminsterfullerene, C60, in the Near-Infrared

Published online by Cambridge University Press:  25 February 2011

Z. H. Kafafi
Affiliation:
Naval Research Laboratory, Washington D.C. 20375
J. R. Lindle
Affiliation:
Naval Research Laboratory, Washington D.C. 20375
R. G. S. Pong
Affiliation:
Naval Research Laboratory, Washington D.C. 20375
F. J. Bartoli
Affiliation:
Naval Research Laboratory, Washington D.C. 20375
L. J. Lingg
Affiliation:
Naval Research Laboratory, Washington D.C. 20375
J. Milliken
Affiliation:
Naval Research Laboratory, Washington D.C. 20375
Get access

Abstract

Time-resolved degenerate four-wave mixing experiments were conducted on films of pure Qo using a 35 ps Nd:YAG laser. The measurements wavelength 1.064 μm was far off resonance with any one-photon absorption bands. A small linear absorption coefficient α=6 cm−1 was measured at this wavelength. The third-order optical susceptibility χxxxx(3) of C60, derived from its phase conjugate signal, is 7 × 10−12 esu. The nonlinear optical temporal response was largely laser-pulse limited. Evidence for a fifth-order contribution to the nonlinear optical response was observed at high laser intensities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. and Smalley, R. E., Nature 318, 162 (1985).Google Scholar
2. Hawkins, J. M., Meyer, A., Lewis, T. A., Loren, S. D. and Hollander, F. J., Science 252, 312 (1991).Google Scholar
3. Chemia, D. S. and Zyss, J., eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, 1987), Vols. 1 and 2;Google Scholar
Prasad, P. N. and Williams, D. J., eds., Introduction to Nonlinear Optical Effects in Molecules and Polymers (John Wiley & Sons, Inc., New York, (1990);Google Scholar
Khanarian, G., ed., Nonlinear Optical Properties of Organic Materials III SPIE 1337 (1990);Google Scholar
Bjorklund, G., ed., Polymeric Materials for Photonic and Optical Applications ACS Polymer Preprints 32, 61 (1991).Google Scholar
4. Fowler, P. W., Lazzeretti, P. and Zanasi, R., Chem. Phys. Lett. 165, 79 (1990).Google Scholar
5. Kratschmer, W., Lamb, L. D., Fostiropoulos, K. and Huffman, D. R., Nature 347, 354 (1990).Google Scholar
6. Hoshi, H., Nakamura, N., Maruyama, Y., Nakagawa, T., Suzuki, S., Shiromaru, H., and Achiba, Y., Jpn. J. Appl. Phys. 30, L197 (1991).Google Scholar
7. Blau, W. J., Byrne, H. J., Cardin, D. J., Dennis, T. J., Hare, J. P., Kroto, H. W., Taylor, R., and Walton, D. R. M., Phys. Rev. Lett. 67, 1423 (1991).Google Scholar
8. Haufler, R. E., Conceicao, J., Chibante, L. P. F., Chai, Y., Byrne, N. E., Flanagan, S., Haley, M. M., O'Brien, S. C., Pan, C., Xiao, Z., Billups, W. E., Ciufolini, M. A., Hauge, R. H., Margrave, J. L., Wilson, L. J., Curl, R. F. and Smalley, R. E., J. Phys. Chem. 94, 8634 (1990).Google Scholar
9. Ajie, H., Alvarez, M. M., Anz, S. J., Beck, R. D., Diederich, F., Fosdropouios, K., Huffman, D. R., Kratschmer, W., Rubin, Y., Schriver, K. E., Sensharma, D. and Whetten, R. L., J. Phys. Chem. 94, 8630 (1990).Google Scholar
10. Reber, C., Yee, L., McKiernan, J., Zink, J. I., Williams, R. S., Tong, W. M., Ohlberg, D. A. A., Whetten, R. L. and Diederich, F., J. Phys. Chem. 94, 2127 (1991).Google Scholar
11. Ren, S. L., Wang, Y., Rao, A. M., McRae, E., Holden, J. M., Hager, T., Wang, K., Lee, W-T., Ni, H. F., Selegue, J. and Eklund, P. C., Appl. Phys. Lett. 59, 2678 (1991).Google Scholar
12. Skumanich, A., Chem. Phys. Lett. 182, 486 (1991).Google Scholar
13. Sension, R. J., Phillips, C. M., Szarka, A. Z., Romanow, W. J., McGhie, A. R., McCauley, J. P. Jr, Smith, A. B. III, and Hochstrasser, R. M., J. Phys. Chem. 95, 6075 (1991).Google Scholar
14. Heflin, J. R., Wong, K. Y., Zamani-Khamiri, O., and Garito, A. F., Phys. Rev. B 38, 1573 (1988).Google Scholar
15. Milliken, J., Keller, T. M., Baronavski, A. P., McElvany, S. W., Callahan, J. H. and Nelson, H. H., Chemistry of Materials, 3, 386 (1991).Google Scholar
16. Lindle, J. R., Bartoli, F. J., Hoffman, C. A., Kim, O-K, Lee, Y. S., Shirk, J. S., and Kafafi, Z. H., Appl. Phys. Lett. 56, 712 (1990).Google Scholar
17. Vanherzeele, H., Medi, J. S., Jenekhe, S. A., and Roberts, M. F., Appl. Phys. Lett. 58, 663 (1991).Google Scholar
18. Sasabe, H., Wada, T., Hosoda, M., Ohkawa, H., Yamada, A. and Garito, A. F., Mol. Cryst. Liq. Cryst. 189, 155 (1990).Google Scholar
19. Shirk, J. S., Lindle, J. R., Bartoli, F. J., Hoffman, C. A., Kafafi, Z. H., and Snow, A. W., Appl. Phys. Lett. 55, 1287 (1989).Google Scholar