Skip to main content Accessibility help
×
Home

Nonlinear Mechanical Properties of Graphene Nanoribbons

  • Qiang Lu (a1) and Rui Huang (a1)

Abstract

Based on atomistic simulations, the nonlinear elastic properties of monolayer graphene nanoribbons under quasistatic uniaxial tension are predicted, emphasizing the effect of edge structures (armchair and zigzag, without and with hydrogen passivation). The results of atomistic simulations are interpreted using a theoretical model of thermodynamics, which enables determination of the nonlinear functions for the strain-dependent edge energy and the hydrogen adsorption energy, for both zigzag and armchair edges. Due to the edge effects, the initial Young’s modulus of graphene nanoribbons under infinitesimal strain varies with the edge chirality and the ribbon width. Furthermore, it is found that the nominal strain to fracture is considerably lower for armchair graphene nanoribbons than for zigzag ribbons. Two distinct fracture mechanisms are identified, with homogeneous nucleation for zigzag ribbons and edge-controlled heterogeneous nucleation for armchair ribbons.

Copyright

References

Hide All
1. Berger, C., et al. , Science 312, 11911196 (2006).
2. Ozyilmaz, B., et al. , Phys. Rev. Lett. 99, 166804 (2007).
3. Lin, Y. M., et al. , Phys. Rev. B 78, 161409R (2008).
4. Li, X. L., et al. , Science 319, 12291232 (2008).
5. Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M. S., Phys. Rev. B 54, 1795417961 (1996).
6. Son, Y.-W., Cohen, M. L., Louie, S. G., Phys. Rev. Lett. 97, 216803 (2006).
7. Barone, V., Hod, O., Scuseria, G. E., Nano Lett. 6, 27482754 (2006).
8. Dutta, S., Lakshmi, S., Pati, S. K., Phys. Rev. B 77, 073412 (2008).
9. Shenoy, V. B., Reddy, C. D., Ramasubramaniam, A., Zhang, Y. W., Phys. Rev. Lett. 101, 245501 (2008).
10. Bets, K. V., Yakobson, B. I., Nano Research 2, 161166 (2009).
11. Reddy, C. D., Ramasubramaniam, A., Shenoy, V. B., Zhang, Y. W., Appl. Phys. Lett. 94, 101904 (2009).
12. Zhao, H., Min, K., Aluru, N. R., Nano Lett. 9, 30123015 (2009).
13. Bu, H., et al. , Phys. Lett. A 373, 33593362 (2009).
14. Xu, Z. P., J. Computational and Theoretical Nanoscience 6, 625628 (2009).
15. Faccio, R., Denis, P. A., Pardo, H., Goyenola, C., Mombru, A. W., J. Phys.: Condens. Matter 21, 285304 (2009).
16. Topsakal, M., Ciraci, S., Phys. Rev. B 81, 024107 (2010).
17. Gan, C. K., Srolovitz, D. J., Phys. Rev. B 81, 125445 (2010).
18. Lu, Q., Huang, R., Phys. Rev. B 81, 155410 (2010).
19. Liu, F., Ming, P. M., Li, J., Phys. Rev. B 76, 064120 (2007).
20. Wei, X., Fragneaud, B., Marianetti, C. A., Kysar, J. W., Phys. Rev. B 80, 205407 (2009).
21. Lu, Q., Huang, R., Int. J. Appl. Mech. 1, 443467 (2009).
22. Lee, C., Wei, X., Kysar, J. W., Hone, J., Science 321, 385388 (2008).
23. Koskinen, P., Malola, S., Hakkinen, H., Phys. Rev. Lett. 101, 115502 (2008).
24. Jia, X., et al. , Science 323, 17011705 (2009).10.1126/science.1166862
25. Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., Ruoff, R. S., Science 287, 637640 (2000).
26. Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., Sinnott, S. B., J. Phys. Condens. Mat. 14, 783802 (2002).
27. Arroyo, M., Belytschko, T., Phys. Rev. B. 69, 115415 (2004).
28. Zhou, J., Huang, R., J. Mech. Phys. Solids 56, 16091623 (2008).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed