Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T10:05:31.818Z Has data issue: false hasContentIssue false

Nonlinear characteristics of super resolution chalcogenide thin film

Published online by Cambridge University Press:  01 February 2011

Se-Young Kim
Affiliation:
Department of Ceramic Engineering, Yonsei University 134, Shinchon-Dong, Sudaemun-Ku, Seoul, 120–749, Korea
Myung-jin Kang
Affiliation:
Department of Ceramic Engineering, Yonsei University 134, Shinchon-Dong, Sudaemun-Ku, Seoul, 120–749, Korea
Se-Young Choi
Affiliation:
Department of Ceramic Engineering, Yonsei University 134, Shinchon-Dong, Sudaemun-Ku, Seoul, 120–749, Korea
Get access

Abstract

A third order nonlinear optical material, As2Se3 was proposed for super resolution near field structure disk. As2Se3 was deposited by thermal evaporation technique. Composition, phase, surface morphology, linear/non-linear optical properties were obtained from EPMA, XRD, AFM, UV-VIS-NIR spectrophotometer and VASE. As2Se3 thin film showed large non-linear optical characteristics (XR(3) =7.42×10-7 m2/w, γ=1.268×10-5m2/w) and self-focusing phenomenon. Super resolution effects of the As2Se3 thin films were measured by using the laser beam profiler. As a result, recording density can be enhanced by 2.3 times, in case of 350nm As2Se3 thin film was deposited as super-RENS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lin, W. C., Kao, T. S., Chang, H. H., Lin, Y. H., Fu, Y. H., Wu, C. T., Chen, K. H. and Tsai, D. P., Jpn. J. Appl. Phys. 42 (2003) 1029 Google Scholar
2. Tominaga, J., Nakano, T. and Atoda, N., Appl. Phys. Lett. 73 (1998) 2078 Google Scholar
3. Tominaga, J., Fuji, H., Sato, A., Nakano, T. and Atoda, N., Jpn. J. Appl. Phys. 39 (2000) 957 Google Scholar
4. Kikukawa, , Nakano, T., Shima, T., and Tominaga, J., Appl. Phys. Lett. 81 (2002) 4697 Google Scholar
5. Kim, J., Hwang, I., Yoon, D., Park, I., and Shin, D., Kikukawa, T., Shima, T. and Tominaga, J., Appl. Phys. Lett. 83 (2003) 1701 Google Scholar
6. Kuwahara, M., Shima, T., Kolobov, A. and Tominaga, J., Jpn. J. Appl. Phys. 43 (2004) L8 Google Scholar
7. Acioli, L. H., Gomes, A. S. L., Leite, J. R. R., Araujo, C. B. D., IEEE J. Quantum Electron. 26 (1990) 1277 Google Scholar
8. Wei, J. and Gan, F., Appl. Phys. Lett. 32 (2003) 2607 Google Scholar
9. Johs, B. D., Mcgahan, W. A. and Woolam., G. A., Thin Solid Films 253 (1994) 25 Google Scholar
10. Bahae, M. S., Said, A. A., Wei, T. H., Hagan, D. J. and Van Stryland, E. W., IEEE J. Quantum Elect. 26 (1990) 760 Google Scholar
11. Wei, T. H., Huang, T. H. and Wen, T. C., Chemical Physics Letters, 314, (1999) 403 Google Scholar