Skip to main content Accessibility help

Non-Equilibrium Two-Dimensional Model of Excimer-Laser Melting and Solidification of Thin Si Films on SiO2

  • Vikas V. Gupta (a1), H. Jin Song (a1) and James S. Im (a1)


We have developed a two-dimensional numerical model of excimer-laser melting and solidification that properly takes into account the non-equilibrium and transient nature of the process. The model incorporates a novel explicit finite difference scheme for efficiently solving the heat conduction equation and an algorithm that incorporates the interface response function for properly simulating the evolution of phase domains. The model provides space- and time-resolved information regarding the thermal profile and phase domains from which nearly all of the important solidification details can be extracted (e.g., interface location, solidification velocity, interfacial undercooling, etc.). For the simple partial-melting-and-vertical-regrowth scenario, results from the model converge with the results from the well-established one-dimensional model. As a result of its two-dimensional and non-equilibrium formulation, which also respects the amorphous and inert nature of the underlying oxide surface, the model is unique in its capability for properly simulating those solidification scenarios that involve extensive lateral growth of solids, as for example those behind the super-lateral growth phenomenon and various artificially controlled super-lateral growth processes.



Hide All
1 Im, J.S., Kim, H.J. and Thompson, Mike O., Appl. Phys. Lett. 63, 1969 (1993).
2 Im, J.S. and Kim, H.J., Appl. Phys. Lett. 64, 2303 (1994).
3 Shimizu, K., Sugiura, O., and Matsumura, M., IEEE Trans. Electron Devices 40, 112 (1993).
4 Kuriyama, H., Kiyama, S., Noguchi, S., Kuwahara, T., Ishida, S., Nohda, T., Sano, K., Iwata, H., Kawata, H., Osumi, M., Tsuda, S., Nakano, S., and Kuwano, Y., Jpn. JAP. 47, 3700 (1991).
5 Sameshima, T. and Usui, S., J. Appl. Phys. 74, 6592 (1993).
6 Balandin, V. Yu., Kulyasova, O. A., Dvurechenskii, A. V., Aleksandrov, L. N., Babenkova, S. L., and Manzhosov, Yu. A., Phys. Stat. Sol. A 123, 415 (1991).
7 Im, J.S., Lipman, J. D., Miaoulis, I. N., Chen, C. K., and Thompson, C. V., Mat. Res. Soc. Symp. Proc. 157,455(1990).
8 Wood, R.F. and Giles, G.E., Phys. Rev. B 23, 2923 (1981).
9 Baeri, P. and Campisano, S.U., Laser Annealing of Semiconductors, edited by Poate, J.M. and Mayer, J.W. (Academic, New York, 1982), p75.
10 Bucksbaum, P.H. and Bokor, J., Phys. Rev. Lett. 53, 182 (1984).
11 Uttormark, M.J. and Thompson, M.O., Unpublished document.
12 Grigoropoulos, C.P., Park, H. K., and Xu, X., Int. J. Heat Mass Trans. 36, 919 (1993).
13 Singh, R.K. and Narayan, J., Mater. Sci. and Eng. B 3, 217 (1989).
14 Wood, R.F. and Geist, G.A., Phys. Rev. B 34, 2606 (1986).
15 Floryan, J.M. and Rasmussen, H., Appl. Mech. Rev. 42, 323 (1989).
16 Alexiades, V. and Solomon, A.D., Mathematical Modeling of Melting and Freezing Processes (Hemisphere, Wahington D.C., 1993).
17 Barakat, H.Z. and Clark, J.A., J. Heat Trans. 88,421 (1966).
18 Kim, H.J. and Im, J.S., Mat. Res. Soc. Symp. Proa, 358, 903 (1995); H.J. Song and J.S. Im, to be published in this proceeding; J.S. Im and R.S. Sposili, to be published in MRS Bulletin, Volume xxi, No. 3 (1996).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed