Skip to main content Accessibility help

Non-Destructive Analysis of Thin III-V Epitaxial Layers Using a Tabletop Double Crystal X-Ray Diffractometer

  • R. N. Sacks (a1)


Some of today's most promising and interesting semiconductor devices use only a few thin epitaxial layers of III-V materials, where each layer may be only 100 to 1,000A thick. There is a need for fast, accurate, non-destructive analysis techniques for these structures. Double-crystal x-ray diffraction has proven to be an excellent method for measuring composition, thickness, interface sharpness, and overall crystalline quality of III-V heterostructures. Data is presented on the use of a Bede QC1 automated table-top double-crystal diffractometer for the analysis of (AI,Ga)As, (ln,Ga)As, and GaAs epitaxial layers grown by Molecular Beam Epitaxy (MBE). It is shown that this technique can directly detect and analyze single layers of (In,Ga)As as thin as 200A, and in some cases, can indirectly detect layers of GaAs or (AI,Ga)As as thin as 100A without unusual measures such as glancing angle diffraction. The rocking curve results are compared with values predicted by RHEED intensity oscillation measurements, and with computer simulations using a commercial software package.



Hide All
[1] Tanner, B. K., J. Electrochem. Soc. 136, 3438 (1989)
[2] Bassignana, I. C. and Thn, C. C., J. Appl. Cryst. 22, 269 (1989)
[3] Bede Scientific Instruments Ltd., Bowburn, Durham, England
[4] Neave, J. H., Joyce, B. A., Dobson, P. J., and Norton, N., Appl. Phys. A 31, 1 (1983)
[5] Fewster, P.F and Curling, C. J., J. Appl. Phys. 62, 4154 (1987)
[6] Thnski, W J., Sacks, R. N., Merritt, S.W, Cullen, D. E., Branciforte, E. J., Eschrich, T C., and Carroll, R. D., J. Vac. Sci. Technol. B 8, 352 (1990)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed