Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T04:01:12.147Z Has data issue: false hasContentIssue false

Noncontact Characterization for Ultraviolet Light Irradiation Effect on Si-SiO2 Interface

Published online by Cambridge University Press:  26 February 2011

K. Katayama
Affiliation:
North Carolina State University, Dept. of Mat. Sci.& Eng., Raleigh, NC 27695–7916 USA
F. Shimura
Affiliation:
North Carolina State University, Dept. of Mat. Sci.& Eng., Raleigh, NC 27695–7916 USA
Get access

Abstract

The effect of ultraviolet (UV) irradiation on the minority-carrier surface recombination lifetime (τs) in silicon wafers with native or thermal oxide was studied with a noncontact laser/microwave photoconductance (LM-PC) technique. The τs greatly increases in samples with native oxide after the irradiation. The dominant factor for the τs change can be negative charges created by photo-injected electrons in the surface area. On the other hand, the irradiation decreases τs in silicon with thermal oxide. The τs decrease is due to the generation of carrier recombination centers with an energy level around 0.2eV at the Si-SiO2 interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Katayama, K., Kirino, Y., Iba, K., and Shimura, F., Jpn. J. Appl. Phys. 30B L1907 (1992).Google Scholar
[2] Gruenbaum, P. E., Sinton, R. A., and Swanson, R. M., Appl. Phys. Lett. 52 1407 (1988).CrossRefGoogle Scholar
[3] Gruenbaum, P. E., King, R. R., and Swanson, R. M., J. Appl. Phys. 66 6110 (1989).Google Scholar
[4] Kern, W. and Puotinen, D. A., RCA Rev. 31 187 (1970).Google Scholar
[5] Shimura, F., Okui, T., and Kusama, T., J. Appl. Phys. 67 7168 (1990).Google Scholar
[6] Kirino, Y., Buczkowski, A., Radzimski, Z. J., Rozgonyi, G. A., and Shimura, F., Appl. Phys. Lett. 57 2832 (1990).CrossRefGoogle Scholar
[7] Zhong, L., Buczkowski, A., Katayama, K., and Shimura, F., submitted to Appl. Phys. Lett.Google Scholar
[8] Katayama, K. and Shimura, F., to be published in Jpn. J. Appl. Phys.Google Scholar
[9] Pang, S., Lyon, S. A., and Johnson, W. C., Appl. Phys. Lett. 40 709 (1982).Google Scholar
[10] Pang, S., Lyon, S. A., and Johnson, W. C., in The Physins of MOS Insulators, edited by Lucovsky, G., Pantelides, S. T., and Galeener, F. L. (Pergamon Press., New York, 1980), p. 285.Google Scholar
[11] Katayama, K., Kirino, Y., and Shimura, F., in Defects in Silicon II, edited by Bullis, W. M., Gösele, U., and Shimura, F. (The Electrochemical Society Proc. 91-l, Pennington, NJ, 1991) pp. 8996.Google Scholar
[12] Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology (John Wiley & Sons, Inc., NY, 1982), Chap. 2.Google Scholar
[13] Grove, A. S., Physics and Technology of Semiconductor Devices (John Wiley & Sons, Inc., NY, 1967), Chap. 5.Google Scholar