Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-27T16:35:39.276Z Has data issue: false hasContentIssue false

Nonalloyed Ohmic Contacts to N-Si Using a Strained Si0.5Ge0.5 Buffer Layer

Published online by Cambridge University Press:  03 September 2012

Hsing-Kuen Liou
Affiliation:
Department of Electrical Engineering, Columbia University, New York, N.Y. 10027
Edward S. Yang
Affiliation:
Department of Electrical Engineering, Columbia University, New York, N.Y. 10027
K. N. Tu
Affiliation:
Department of Materials Science and Engineering, University of California at Los AngelesLos Angeles, C.A. 90024
Get access

Abstract

Nonalloyed shallow ohmic contacts to n-Si have been fabricated by using an 80 Å thick strained Si0.5Ge0.5 buffer layer grown by molecular beam epitaxy. X-ray photoelectron spectroscopy was employed to investigate the Si 2p and Ge 3d core level binding energies of the strained and the relaxed Si0.5Ge0.5 and to determine their relative Fermi level positions. It was found that the surfaces of strained Si0.5Ge0.5 exhibit pinning very close to the conduction band. Rutherford backscattering and Auger depth profiling were employed to determine the contact reactions using Ti, W or Pt as contact metals. In the case of Pt, a 500 Å W diffusion barrier can protect the ohmic behavior up to 550 °C for 30 min. The specific contact resistance of the Pt/W/Si0.5Ge0.5/n-Si contact extracted from the D-type cross-bridge Kelvin resistor was 3.5x10-5 Ω·cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. People, R., Phys. Rev. B32 1405 (1985).Google Scholar
2. People, R. and Bean, J. C., Appl. Phys. Lett. 48 538 (1986).Google Scholar
3. Walle, C. G. Van de and Martin, R. M., Phys. Rev. B34 5621 (1986).Google Scholar
4. People, R., Bean, J. C., Lang, D. V., Sergent, A. M., Stbrmer, H. L., Wecht, K. W., Lynch, R. T., and Baldwin, K., Appl. Phys. Lett. 45 1231 (1984)Google Scholar
5. Abstreiter, G., Brugger, H., Wolf, T., Jorke, H., and Herzog, H. J., Phys. Rev. Lett. 54 2441 (1985).Google Scholar
6. Braslau, N., Gunn, J. B., and Staples, J. L., Solid-State Electron. 10 381 (1967).Google Scholar
7. Murakami, M. and Price, W. H., Appl. Phys. Lett. 51 664 (1987).Google Scholar
8. Wang, L. C., Wang, X. Z., Hsu, S. N., Lau, S. S., Lin, P.S. D., Sands, T., Schwarz, S. A., Plumton, D. L., and Kuech, T. F., J. Appl. Phys. 69 4364 (1991).Google Scholar
9. Hafich, M. J., Gillenwater, R. L., Robinson, G. Y., and Sheldon, P., Mat. Res. Soc. Symp. Proc. 54 511 (1986).CrossRefGoogle Scholar
10. Stall, R. A., Wood, C. E. C., Board, K., Dandekar, N., Eastman, L. F., and Devlin, J., J. Appl. Phys. 52 4062 (1981).Google Scholar
11. Woodall, J. M., Freeouf, J. L., Pettit, G. D., Jackson, T., and Kirchner, P., J. Vac. Sci. Technol. 19 626 (1981).Google Scholar
12. Liou, H. K., Wu, X., Gennser, U., Kesan, V. P., Iyer, S. S., Tu, K. N., and Yang, E. S., Appl. Phys. Lett. 60 577 (1992).Google Scholar
13. Delage, S. L., Iyer, S. S., and Scilla, G. J., in Proc. of the 2nd nt. Symp. on Silicon MBE (Electrochemical Society, Pennington, N.J., 1988), Vol. 88–8, p. 459.Google Scholar
14. Proctor, S. J. and Linholm, L. W., IEEE Electron Device Lett. EDL–3 294 (1982).CrossRefGoogle Scholar
15. Gillenwater, R. L., Hafich, M. J. and Robinson, G. Y., IEEE Trans. Electron Devices, ED–34 537 (1987).Google Scholar
16. Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, 2nd ed. (Clarendon Press, Oxford, 1988), p. 204.Google Scholar
17. Michaelson, H. B., J. Appl. Phys. 48 4729 (1977).Google Scholar
18. Tu, K. N. and Mayer, J. W., Thin Films Interdiffusion and Reactions, ed. by Poate, J. M., Tu, K. N. and Mayer, J. W. (Wiley, New York, 1978), Chapter 10.Google Scholar