Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T05:09:53.262Z Has data issue: false hasContentIssue false

NMR Characterization of Hybrid Systems Based on Functionalized Silsesquioxanes

Published online by Cambridge University Press:  10 February 2011

C. Bonhomme
Affiliation:
Université Pierre et Marie Curie / CNRS, Chimie de la Matière Condensée, Paris, France.
F. Babonneau
Affiliation:
Université Pierre et Marie Curie / CNRS, Chimie de la Matière Condensée, Paris, France.
J. Maquet
Affiliation:
Université Pierre et Marie Curie / CNRS, Chimie de la Matière Condensée, Paris, France.
C. Zhang
Affiliation:
University of Michigan, Departments of Chemistry and Material Science and Engineering, Ann Arbor, MI, USA.
R. Baranwal
Affiliation:
University of Michigan, Departments of Chemistry and Material Science and Engineering, Ann Arbor, MI, USA.
R. M. laine
Affiliation:
University of Michigan, Departments of Chemistry and Material Science and Engineering, Ann Arbor, MI, USA.
Get access

Abstract

In this paper, we present recent NMR investigations on several silsesquioxanes (RSiO1.5)8 with R = H, CH3, CH=CH2, OSi(CH 3)2R′ (R′ = H, CH3, CH=CH2). The octameric polyhedral “cubane like” derivatives were analyzed by means of high resolution 13C and 29Si solid state NMR including CP (Cross-Polarization) and MAS (Magic Angle Spinning) techniques. The CP sequence including variable contact time was used in order to extract quantitative data. The ID IRCP sequence (Inversion Recovery Cross Polarization), based on the standard CP scheme, allowed us to investigate the CP dynamics of the involved sites and to propose a complete spectral editing of the spectra. Furthermore, local molecular motions were determined through the careful analysis of CP dynamics. Finally, the NMR results related to crystalline cubane derivatives were extended to hybrid systems obtained by cross-coupling of monomeric entities (via hydrosilylation).

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Voronkov, M.G., Lavrent'yev, V.I., Top. Curr. Chem., 102, 199 (1982).Google Scholar
2. Baney, R.H., Itoh, M., Sakakibara, A., Suzuki, T., Chem. Rev., 95, 1409 (1995).Google Scholar
3. Loy, D.A., Shea, K.J., Chem. Rev., 95, 1431 (1995).Google Scholar
4. see for instance : (a) Feher, F.J., Weller, K.J., Organometallics, 9, 2638 (1990) (b) M. Moran, M. Casado, I. Cuadrado, J. Losada, Organometallics, 12, 4327 (1993) (c) J.D. Lichtenhan, A.O. Yoshiko, M.J. Carr, Macromol., 28, 8435 (1995) (d) S.E. Yuchs, K.A. Carrado, Inorg. Chem., 35, 261 (1996).Google Scholar
5. (a) G. Calzaferri, R. Imhof, K.W. Törnroos, J. Chem. Soc., Dalton Trans., 3123 (1994) (b) Törnroos, K.W., Bürgi, H.B., Calzaferri, G., Acta Cryst., B51, 155 (1995).Google Scholar
6. Bürgi, H.B., Acta Cryst., B51, 571 (1995).Google Scholar
7. Hendan, B.J., Marsmann, H.C., J. Organomet. Chem., 33, 483 (1994).Google Scholar
8. Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G., Grimmer, A.R., J. Am. Chem. Soc., 102, 4889 (1980).Google Scholar
9. Hoebbel, D., Pitsch, I., Heidemann, D., Jancke, H., Hiller, W., Z. Anorg. Allg. Chem., 583, 133 (1990).Google Scholar
10. Pitsch, I., Hoebbel, D., Jancke, H., Hiller, W., Anorg., Z. Allg. Chem., 596, 63 (1991).Google Scholar
11. Hasegawa, I., Sakka, S., Zeolite Synthesis, ACS symposium Ser. 398, 8 (1989).Google Scholar
12. Melchior, M.T., Poster B29, 22nd exp. NMR conference, Asilomar (1981).Google Scholar
13. Wu, X., Zilm, K.W., J. Magn. Res., A 102, 205 (1993).Google Scholar
14. Bonhomme, C., Bonhomme-Coury, L., Livage, J., Boch, P., to be published.Google Scholar
15. Harris, R.K., Pritchard, T.N., Smith, E.G., J. Chem. Soc., Faraday Trans I, 85, 1853 (1989).Google Scholar
16. Veeman, W.S., Prog. NMR Spectr., 16, 193 (1984).Google Scholar
17. Bonhomme, C., Maquet, J., Livage, J., Mariotto, G., Inorg. Chim. Acta, 230, 85 (1995).Google Scholar
18. Zumbulyadis, N., J. Chem. Phys., 86, 1162 (1987).Google Scholar
19. Babonneau, F., Maquet, J., Bonhomme, C., Richter, R., Roewer, G., Bahloul, D., Chem. Mater., in press.Google Scholar
20. Mehring, M., Principles of High Resolution NMR in Solids, Springer (1983).Google Scholar
21. Palmas, P., Tekely, P., Canet, D., J. Magn. Res., A104, 26 (1993).Google Scholar