Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-19T05:34:26.563Z Has data issue: false hasContentIssue false

NMR and impedance study of H+-ion irradiated TlH2PO4

Published online by Cambridge University Press:  01 February 2011

Se Hun Kim
Affiliation:
Department of Physics, Korea University, Seoul 136–713, Korea
Kyu Won Lee
Affiliation:
Department of Physics, Korea University, Seoul 136–713, Korea
Jae Won Jang
Affiliation:
Department of Physics, Korea University, Seoul 136–713, Korea
Cheol Eui Lee
Affiliation:
Department of Physics, Korea University, Seoul 136–713, Korea
S. J. Noh
Affiliation:
Department of Applied Physics, Dankook University, Seoul 140–714, Korea
Get access

Abstract

The H+-ion treatment effect on TlH2PO4, a KH2PO4 (KDP)-type ferroelectrics, was studied by nuclear magnetic resonance (NMR) and AC dielectric measurements. A sample of TlH2PO4 was irradiated by 1-MeV H+ ion beams to a dose of 1015 ions/cm2. The irradiation changed the hydrogen-bond geometry, presumably affecting the order-disorder proton dynamics. The deformation of the PO4 tetrahedra was identified by the isotropic chemical shift and the full width at half maximum (FWHM) of the high-resolution 31P NMR spectra. A prominent decrease in the dielectric constant was also observed after the irradiation. The macroscopic and microscopic changes due to the irradiation are discussed in the light of the proton dynamics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Blinc, R. and Zeks, B., Ferroelectrics 72, 193 (1987).Google Scholar
2. Seliger, J., Zagar, V., Blinc, R., and Schmidt, V. H., J. Chem. Phys. 88, 3260 (1988).Google Scholar
3. Hanazawa, K., Komukae, M., Osaka, T., Makita, Y., Arai, M., and Yagi, T., J. Phys. Soc. Jpn. 60, 188 (1991).Google Scholar
4. Yasuda, N., Fujimoto, S., and Asano, T., Phys. Lett. A 76, 174 (1980).Google Scholar
5. Oddon, Y., Tranquard, A., and Pèpe, G., Acta Crystallogr. Sect. B 35, 542 (1979).Google Scholar
6. Nelmes, R. J. and Choudhary, R. N. P., Solid.State Commun. 38, 321 (1981).Google Scholar
7. Ichikawa, M., Motida, K., and Yamada, N., Phys. Rev. B 36, R874 (1987).Google Scholar
8. McMahon, M. I., Nelmes, R. J., Kuhst, W. F., Dorwarth, R., Piltz, R. O., and Tun, Z., Nature (London) 348, 317 (1990).Google Scholar
9. Stasyuk, I. V., Levitskii, R. R., and Moina, A. P., Phys. Rev. B 59, 8530 (1999).Google Scholar
10. Tanaka, S., Phys. Rev. B 42, 10488 (1990).Google Scholar
11. Koval, S., Kohanoff, J., Migoni, R. L., and Tosatti, E., Phys. Rev. Lett. 89, 187602 (2002).Google Scholar
12. Lee, C. H., Lee, K. W., Lee, C. E., and Lee, K. S., Phys. Rev. B 55, 11088 (1997);Google Scholar
Lee, C. E., Lee, C. H., Kim, J. H., and Lee, K. S., Phys. Rev. Lett. 75, 3309 (1995).Google Scholar
13. Setzler, S. D., Stevens, K. T., Halliburton, L. E., Yan, M., Zaitseva, N. P., and DeYoreo, J. J., Phys. Rev. B 57, 2643 (1998).Google Scholar