Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T16:57:41.911Z Has data issue: false hasContentIssue false

New Results for Electron Transport, Chemical Diffusion and Stability of Solid Oxygen Ion Conductors

Published online by Cambridge University Press:  11 February 2011

H.-D. Wiemhoefer
Affiliation:
Institute for Inorganic and Analytical Chemistry, University of Muenster, 48149 Muenster, Germany
M. Dogan
Affiliation:
Institute for Inorganic and Analytical Chemistry, University of Muenster, 48149 Muenster, Germany
S. Luebke
Affiliation:
Institute for Inorganic and Analytical Chemistry, University of Muenster, 48149 Muenster, Germany
V. Ruehrup
Affiliation:
Institute for Inorganic and Analytical Chemistry, University of Muenster, 48149 Muenster, Germany
Get access

Abstract

We describe the measurement of electronic conductivity of solid oxide electrolytes by a modified Hebb-Wagner technique based on the use of blocking microelectrodes. Results are presented for a couple of typical solid oxide electrolyte systems mainly derived from ceria and lanthanum gallate. The examples demonstrate a good resolution of the microelectrode technique in particular within the electrolyte domain, i.e. around the minimum of the electronic conductivity. This made possible the detection of deviations from the predicted oxygen partial pressure dependence of simple defect models for the concentrations of electrons and holes. The observed deviations from these defect models, at least partially, reflect the overemphasized ideality of the usually applied semiconductor model.

Whereas the effect of dissolved transition metals with variable valence states such as Fe, and Co on the electronic conduction is well known, it was unexpected to find a strong concentration dependent effect of dopants like Y3+ and Zr4+ in ceria or Mg2+ and Sr2+ in the gallates upon the electronic conductivity within the electrolytic domain. Ions like Y3+ and Zr4+ cause a shift and a partial broadening of electronic states in ceria based materials. Indications have been found for band tailing due to high defect concentrations. In some cases, the dopants cause the appearance of additional localized electron states in the gap which give rise to weak superimposed maxima of the electronic conductivity at a particular oxygen partial pressure within the electrolytic domain.

Accordingly, one cannot expect that electronic conductivities of solid electrolytes are insensitive to a changing concentration of stabilizers such as Y, Ca, etc. For instance, even a moderate doping of ceria by zirconia leads to a considerable electronic excess conductivity in the electrolytic domain.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hebb, M. H., J. Chem. Phys. 20, 1952 (1952).Google Scholar
2. Wagner, C., in Proc. of the 7th Meeting of the International Committee on Electrochemical Thermodynamics and Kinetics, Lindau, 1955), p. p. 361ff.Google Scholar
3. Schmalzried, H., Z. Phys. Chem. N.F. 38, 87 (1963).Google Scholar
4. Wagner, J. B. and Wagner, C., J. Chem. Phys. 26, 1597 (1957).Google Scholar
5. Ilschner, B., J. Chem. Phys. 28, 1109 (1958).Google Scholar
6. Patterson, J. W., Bogren, E. C., and Rapp, R. A., J. Electrochem. Soc. 114, 752 (1967).Google Scholar
7. Burke, L. D., Rickert, H., and Steiner, R., Z. phys. Chem. N.F. 74, 146 (1971).Google Scholar
8. Heyne, L. and Beekmans, N. M., Proceedings of the British Ceramic Society 19, 229 (1971).Google Scholar
9. Schilling, F., Vohrer, U., Wiemhoefer, H.-D., Arndt, J., and Goepel, W., Sensors and Actuators B 4, 411 (1991).Google Scholar
10. Vohrer, U., Wiemhoefer, H.-D., Goepel, W., van Hassel, B. A., and Burggraaf, A. J., Solid State Ionics 59, 141 (1993).Google Scholar
11. Guo, X. and Maier, J., Solid State Ionics 130, 267 (2000).Google Scholar
12. Kobayashi, K., Yamaguchi, S., Higuchi, T., Shin, S., and Iguchi, Y., Solid State Ionics 135, 643 (2000).Google Scholar
13. Sasaki, K. and Maier, J., Solid State Ionics 134, 303 (2000).Google Scholar
14. Stefanik, T. S. and Tuller, H. L., Journal of the European Ceramic Society 21, 1967 (2001).Google Scholar
15. Knauth, P. and Tuller, H. L., Solid State Ionics 136, 1215 (2000).Google Scholar
16. Porat, O., Spears, M. A., Heremans, C., Kosacki, I., and Tuller, H. L., Solid State Ionics 86–88, 285 (1996).Google Scholar
17. Tuller, H. L., Solid State Ionics 94, 63 (1997).Google Scholar
18. Nafe, H., Solid State Ionics 59, 5 (1993).Google Scholar
19. Long, N. J., Lecarpentier, F., and Tuller, H. L., Journal of Electroceramics 3, 399 (1999).Google Scholar
20. Trofimenko, N. and Ullman, H., Solid State Ionics 118, 215 (1999).Google Scholar
21. Ullmann, H., Trofimenko, N., Naoumidis, A., and Stover, D., Journal of the European Ceramic Society 19, 791 (1999).Google Scholar
22. Schindler, K., Schmeiβer, D., Vohrer, U., Wiemhoefer, H.-D., and Goepel, W., Sensors and Actuators 17, 555 (1989).Google Scholar
23. Wiemhoefer, H.-D. and Vohrer, U., Ber. Bunsenges. Phys. Chem. 96, 1646 (1992).Google Scholar
24. Wiemhoefer, H.-D., Harke, S., and Vohrer, U., Solid State Ionics 40/41 (1990).Google Scholar
25. Anderson, P. W., Physical Review 109, 1492 (1958).Google Scholar
26. Mott, S. N., Pepper, M., Pollitt, S., Wallis, R. H., and Adkins, C. J., Proc. Roy. Soc. Lond. A 345, 169 (1975).Google Scholar
27. Luebke, S. and Wiemhoefer, H. D., Solid State Ionics 117, 229 (1999).Google Scholar
28. Weitkamp, J. and Wiemhoefer, H.-D., Solid State Ionics 154–155C, 597 (2002).Google Scholar
29. Luebke, S. and Wiemhoefer, H. D., Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 102, 642 (1998).Google Scholar
30. Lee, J. H., Yoon, S. M., Kim, B. K., Lee, H. W., and Song, H. S., Journal of Materials Science 37, 1165 (2002).Google Scholar
31. Yokokawa, H., Sakai, N., Horita, T., Yamaji, K., Xiong, Y. P., Otake, T., Yugami, H., Kawada, T., and Mizusaki, J., Journal of Phase Equilibria 22, 331 (2001).Google Scholar
32. Xiong, Y. P., Yamaji, K., Sakai, N., Negishi, H., Horita, T., and Yokokawa, H., Journal of the Electrochemical Society 148, E489 (2001).Google Scholar
33. Sakai, N., Hashimoto, T., Katsube, T., Yamaji, K., Negishi, H., Horita, T., Yokokawa, H., Xiong, Y. P., Nakagawa, M., and Takahashi, Y., Solid State Ionics 143, 151 (2001).Google Scholar
34. Lee, J. H., Yoon, S. M., Kim, B. K., Kim, J., Lee, H. W., and Song, H. S., Solid State Ionics 144, 175 (2001).Google Scholar
35. Kawamura, K., Watanabe, K., Hiramatsu, T., Kaimai, A., Nigara, Y., Kawada, T., and Mizusaki, J., Solid State Ionics 144, 11 (2001).Google Scholar
36. Hori, C. E., Ng, K. Y. S., Brenner, A., Rahmoeller, K. M., and Belton, D., Brazilian Journal of Chemical Engineering 18, 23 (2001).Google Scholar
37. Tsoga, A., Naoumidis, A., and Stover, D., Solid State Ionics 135, 403 (2000).Google Scholar
38. Otake, T., Yugami, H., Naito, H., Kawamura, K., Kawada, T., and Mizusaki, J., Solid State Ionics 135, 663 (2000).Google Scholar