Skip to main content Accessibility help
×
Home

New Results for Electron Transport, Chemical Diffusion and Stability of Solid Oxygen Ion Conductors

  • H.-D. Wiemhoefer (a1), M. Dogan (a1), S. Luebke (a1) and V. Ruehrup (a1)

Abstract

We describe the measurement of electronic conductivity of solid oxide electrolytes by a modified Hebb-Wagner technique based on the use of blocking microelectrodes. Results are presented for a couple of typical solid oxide electrolyte systems mainly derived from ceria and lanthanum gallate. The examples demonstrate a good resolution of the microelectrode technique in particular within the electrolyte domain, i.e. around the minimum of the electronic conductivity. This made possible the detection of deviations from the predicted oxygen partial pressure dependence of simple defect models for the concentrations of electrons and holes. The observed deviations from these defect models, at least partially, reflect the overemphasized ideality of the usually applied semiconductor model.

Whereas the effect of dissolved transition metals with variable valence states such as Fe, and Co on the electronic conduction is well known, it was unexpected to find a strong concentration dependent effect of dopants like Y3+ and Zr4+ in ceria or Mg2+ and Sr2+ in the gallates upon the electronic conductivity within the electrolytic domain. Ions like Y3+ and Zr4+ cause a shift and a partial broadening of electronic states in ceria based materials. Indications have been found for band tailing due to high defect concentrations. In some cases, the dopants cause the appearance of additional localized electron states in the gap which give rise to weak superimposed maxima of the electronic conductivity at a particular oxygen partial pressure within the electrolytic domain.

Accordingly, one cannot expect that electronic conductivities of solid electrolytes are insensitive to a changing concentration of stabilizers such as Y, Ca, etc. For instance, even a moderate doping of ceria by zirconia leads to a considerable electronic excess conductivity in the electrolytic domain.

Copyright

References

Hide All
1. Hebb, M. H., J. Chem. Phys. 20, 1952 (1952).
2. Wagner, C., in Proc. of the 7th Meeting of the International Committee on Electrochemical Thermodynamics and Kinetics, Lindau, 1955), p. p. 361ff.
3. Schmalzried, H., Z. Phys. Chem. N.F. 38, 87 (1963).
4. Wagner, J. B. and Wagner, C., J. Chem. Phys. 26, 1597 (1957).
5. Ilschner, B., J. Chem. Phys. 28, 1109 (1958).
6. Patterson, J. W., Bogren, E. C., and Rapp, R. A., J. Electrochem. Soc. 114, 752 (1967).
7. Burke, L. D., Rickert, H., and Steiner, R., Z. phys. Chem. N.F. 74, 146 (1971).
8. Heyne, L. and Beekmans, N. M., Proceedings of the British Ceramic Society 19, 229 (1971).
9. Schilling, F., Vohrer, U., Wiemhoefer, H.-D., Arndt, J., and Goepel, W., Sensors and Actuators B 4, 411 (1991).
10. Vohrer, U., Wiemhoefer, H.-D., Goepel, W., van Hassel, B. A., and Burggraaf, A. J., Solid State Ionics 59, 141 (1993).
11. Guo, X. and Maier, J., Solid State Ionics 130, 267 (2000).
12. Kobayashi, K., Yamaguchi, S., Higuchi, T., Shin, S., and Iguchi, Y., Solid State Ionics 135, 643 (2000).
13. Sasaki, K. and Maier, J., Solid State Ionics 134, 303 (2000).
14. Stefanik, T. S. and Tuller, H. L., Journal of the European Ceramic Society 21, 1967 (2001).
15. Knauth, P. and Tuller, H. L., Solid State Ionics 136, 1215 (2000).
16. Porat, O., Spears, M. A., Heremans, C., Kosacki, I., and Tuller, H. L., Solid State Ionics 86–88, 285 (1996).
17. Tuller, H. L., Solid State Ionics 94, 63 (1997).
18. Nafe, H., Solid State Ionics 59, 5 (1993).
19. Long, N. J., Lecarpentier, F., and Tuller, H. L., Journal of Electroceramics 3, 399 (1999).
20. Trofimenko, N. and Ullman, H., Solid State Ionics 118, 215 (1999).
21. Ullmann, H., Trofimenko, N., Naoumidis, A., and Stover, D., Journal of the European Ceramic Society 19, 791 (1999).
22. Schindler, K., Schmeiβer, D., Vohrer, U., Wiemhoefer, H.-D., and Goepel, W., Sensors and Actuators 17, 555 (1989).
23. Wiemhoefer, H.-D. and Vohrer, U., Ber. Bunsenges. Phys. Chem. 96, 1646 (1992).
24. Wiemhoefer, H.-D., Harke, S., and Vohrer, U., Solid State Ionics 40/41 (1990).
25. Anderson, P. W., Physical Review 109, 1492 (1958).
26. Mott, S. N., Pepper, M., Pollitt, S., Wallis, R. H., and Adkins, C. J., Proc. Roy. Soc. Lond. A 345, 169 (1975).
27. Luebke, S. and Wiemhoefer, H. D., Solid State Ionics 117, 229 (1999).
28. Weitkamp, J. and Wiemhoefer, H.-D., Solid State Ionics 154–155C, 597 (2002).
29. Luebke, S. and Wiemhoefer, H. D., Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 102, 642 (1998).
30. Lee, J. H., Yoon, S. M., Kim, B. K., Lee, H. W., and Song, H. S., Journal of Materials Science 37, 1165 (2002).
31. Yokokawa, H., Sakai, N., Horita, T., Yamaji, K., Xiong, Y. P., Otake, T., Yugami, H., Kawada, T., and Mizusaki, J., Journal of Phase Equilibria 22, 331 (2001).
32. Xiong, Y. P., Yamaji, K., Sakai, N., Negishi, H., Horita, T., and Yokokawa, H., Journal of the Electrochemical Society 148, E489 (2001).
33. Sakai, N., Hashimoto, T., Katsube, T., Yamaji, K., Negishi, H., Horita, T., Yokokawa, H., Xiong, Y. P., Nakagawa, M., and Takahashi, Y., Solid State Ionics 143, 151 (2001).
34. Lee, J. H., Yoon, S. M., Kim, B. K., Kim, J., Lee, H. W., and Song, H. S., Solid State Ionics 144, 175 (2001).
35. Kawamura, K., Watanabe, K., Hiramatsu, T., Kaimai, A., Nigara, Y., Kawada, T., and Mizusaki, J., Solid State Ionics 144, 11 (2001).
36. Hori, C. E., Ng, K. Y. S., Brenner, A., Rahmoeller, K. M., and Belton, D., Brazilian Journal of Chemical Engineering 18, 23 (2001).
37. Tsoga, A., Naoumidis, A., and Stover, D., Solid State Ionics 135, 403 (2000).
38. Otake, T., Yugami, H., Naito, H., Kawamura, K., Kawada, T., and Mizusaki, J., Solid State Ionics 135, 663 (2000).

New Results for Electron Transport, Chemical Diffusion and Stability of Solid Oxygen Ion Conductors

  • H.-D. Wiemhoefer (a1), M. Dogan (a1), S. Luebke (a1) and V. Ruehrup (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed