Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-19T14:35:06.730Z Has data issue: false hasContentIssue false

New Organometallic and Coordination Chemistry Routes Towards Unsupported and Silica-Supported Bismuth-Based Oxide-Type Materials

Published online by Cambridge University Press:  16 February 2011

M. Devillers
Affiliation:
Laboratoire de Chimie Inorganique et Analytique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium, devillers@inan.ucl.ac.be
S. Lebrun
Affiliation:
Laboratoire de Chimie Inorganique et Analytique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium, devillers@inan.ucl.ac.be
O. Tirions
Affiliation:
Laboratoire de Chimie Inorganique et Analytique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium, devillers@inan.ucl.ac.be
H. Wullens
Affiliation:
Laboratoire de Chimie Inorganique et Analytique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium, devillers@inan.ucl.ac.be
Get access

Abstract

Coordination and organometallic compounds containing bismuth, lanthanum or molybdenum are used as precursors for the preparation of unsupported or silica-supported Bi-based oxides. Bismuth (III) and lanthanum (III) polyaminocarboxylates, and more specifically homo- and heteropolymetallic complexes of triethylenetetraaminehexaacetic acid (H6ttha) are shown to constitute adequate precursors for the formation of mixed Bi2-xLaxO3 oxides at moderate temperatures. Silica-supported bismuth molybdates are obtained from impregnation or combined impregnation-deposition procedures involving Bi ß-diketonates, carboxylates or mixed acetate-Nmethylimidazole Bi complexes, in association with molybdenyl acetylacetonate or heteroleptic carbonyl-pyridine Mo complexes, either dissolved or dispersed in various organic solvents.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tirions, O., Devillers, M., Ruiz, P. and Delmon, B., Stud. Surf. Sci. Catal. 91, 999 (1995).Google Scholar
2. Devillers, M., De Smet, F. and Tirions, O., Thermochim. Acta 260, 165 (1995).Google Scholar
3. Devillers, M., Tirions, O., Cadus, L., Ruiz, P. and Delmon, B., J. Solid State Chem. 126, 152 (1996).Google Scholar
4. Wullens, H., Devillers, M., Tinant, B. and Declercq, J.-P., J. Chem. Soc., Dalton Trans. 1996, 2023; Acta Cryst. C54, 770 (1998).Google Scholar
5. Pisarevskii, A.P., Martynenko, L.I. and Dzyubenko, N.G., Russ. J. Inorg. Chem. 35 (6), 843846 (1990) [Zh. Neorg. Khim. 35, 1489 (1990)].Google Scholar
6. Pisarevskii, A.P., Martynenko, L.I. and Dzyubenko, N.G., Russ. J. Inorg. Chem. 37 (1), 38-41 (1992) [Zh. Neorg. Khim. 37, 72 (1991)].Google Scholar
7. Hieber, V.W. and Mühlbauer, F., Z. anorg. allg. Chem. 221, 337 (1935).Google Scholar
8. Boyle, T.J., Buchheit, C.D., Rodriguez, M.A., Al-Shareef, H.N., Hernandez, B.A., Scott, B., Ziller, J.W., J. Mater. Res. 11, 2274 (1996).Google Scholar
9. Wolcyrz, M., Kepinski, L. and Horyn, R., J. Solid State Chem. 116, 72 (1995).Google Scholar
10. Ang, H.-G., Chan, K.S., Chuah, G.K., Jaenicke, S. and Neo, S.K., J. Chem. Soc., Dalton Trans. 1995, 3753.Google Scholar
11. Van Veen, J.A.R., De Jong-Versloot, MS. P.C., Van Kessel, G.M.M. and Fels, F.J., Thermochim. Acta 152, 359 (1989).Google Scholar