Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-16T08:20:32.635Z Has data issue: false hasContentIssue false

New Method of Computing Band Offsets and Its Application to AlGaN/GaN Heterostructures

Published online by Cambridge University Press:  10 February 2011

Richard T. Webster
Affiliation:
Air Force Research Laboratory, Hanscom AFB, MA 01730
A. F. M. Anwar
Affiliation:
Electrical and Systems Engineering Department, University of Connecticut, Storrs, CT 06269
Get access

Abstract

Calculated sheet carrier concentration as a function of Al mole fraction in the quantum well (QW) formed at the GaN/AlGaN heterointerface is calculated and compared to experimental data. Close agreement between experiment and theory is observed. The calculated sheet carrier concentration reflects the maximum carrier concentration possible in the GaN QW for a given Al mole fraction and can not be used to argue in favor of either interface charge or piezoelectric effect as giving rise to the carriers. Based on experimental data the charge density in the AlGaN layer is estimated to be 4 × 1012cm-2

The calculations are based upon a simple technique to determine valence band alignments. Calculated values are compared to experimental data showing excellent agreement. A calculated valence band discontinuity of 0.42eV for AlN/GaN is well within the experimental bounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Binari, S. C., Redwing, J. M., Kelner, G. and Kruppa, W., Electron. Lett., vol.33, No. 3, p. 242, 1997.10.1049/el:19970122Google Scholar
2. Binari, S. C., Electrochem. Soc. Proc., 95–21, p. 136, 1995.Google Scholar
3. Khan, M. A., Chen, Q., Shur, M. S., Dermott, B. T. and Higgins, J. A., IEEE Electron Dev. Lett., vol.17, No.7, p. 325, 1996.10.1109/55.506356Google Scholar
4. Shur, M. S. and Khan, M. A., MRS Bull., p. 44, Feb., 1997 10.1557/S0883769400032565Google Scholar
5. Redwing, J. M., Tischler, M. A., Flynn, J. S., Elhamri, S., Ahoujja, M., Newrock, R. S. and Mitchel, W.C., Appl. Phys. Lett., vol.69, p. 963, 1996 10.1063/1.117096Google Scholar
6. Asbeck, P. M., Yu, E. T., Lau, S. S., Sullivan, G. J., Van Hove, J. and Redwing, J., Electron. Lett., p. 241, Aug. 1997.Google Scholar
7. Martin, G., Strite, S., Botchkarev, A., Agarwal, A., Rockett, A. and Morkoc, H., Appl. Phys. Lett., vol.65, No. 5, p. 610, 1994.10.1063/1.112247Google Scholar
8. Tiwari, S. and Frank, D. J., Appl. Phys. Lett., vol.60, No. 5, p. 630, 1992.10.1063/1.106575Google Scholar
9. Ruan, Y-C and Ching, W. Y., J. Appl. Phys., vol.62, No. 7, p. 2885, 1987.10.1063/1.339398Google Scholar
10. Anwar, A. F. M. and Webster, R. T., J. Appl. Phys., vol.80, No. 12, p. 6827, 1996.10.1063/1.363812Google Scholar