Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-22T22:11:51.789Z Has data issue: false hasContentIssue false

New Magnesium Precursors for Doping Semiconductor Films

Published online by Cambridge University Press:  10 February 2011

Charles H. Winter
Affiliation:
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, cwinter@sun.science.wayne.edu
Jennifer L. Sebestl
Affiliation:
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, cwinter@sun.science.wayne.edu
Mary Jane Heeg
Affiliation:
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, cwinter@sun.science.wayne.edu
Get access

Abstract

Magnesium-doped semiconductors have existing and anticipated applications in the fabrication of blue and green light-emitting diodes, blue and green laser diodes, and in microelectronics devices. At present, the area is limited by the precursor characteristics of bis(cyclopentadienyl)magnesium and substituted derivatives. We will describe our efforts to identify new magnesium source compounds that are potentially superior to magnesocenes and can be used in chemical vapor deposition processes. Monomeric three- and four-coordinate amides have been synthesized and totally characterized. These complexes are low-melting solids and are significantly more volatile than magnesocene derivatives. We will also describe the synthesis and characterization of several other classes of volatile magnesium compounds that might be useful in chemical vapor deposition processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For recent overviews, see: Mohamad, S.N., Salvador, A.A. and Morkoç, H., Proc. IEEE 83, p. 1,306 (1995).Google Scholar
Morkoç, H. and Mohamad, S.N., Science 267, p. 1 (1995).Google Scholar
Gunshor, R.L. and Nurmikko, A.V., MRS Bulletin 20, p. 15 (1995).Google Scholar
2.For a discussion, see: Kozen, A., Nojima, S., Tenmyo, J. and Asahi, H., J. Appl. Phys. 59, p. 1156 (1986).Google Scholar
Tamamura, K., Ohhata, T., Kawai, H. and Kojima, C., C. J. Appl. Phys. 59, p. 3549 (1986).Google Scholar
3. Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N., Jpn. J. Appl. Phys. 31, p. L139 (1993).Google Scholar
Nakamura, S., Iwasa, N., Senoh, M. and Mukai, T., T., Jpn. J. Appl. Phys. 31, p. 1258 (1992).Google Scholar
Nakamura, S., Senoh, M. and Mukai, T., Jpn. J. Appl. Phys. 30, p. L1708 (1991).Google Scholar
Amano, H., Kitoh, M., Hiramatsu, K. and Akasaki, I., J. Electrochem. Soc. 137, p. 1639 (1990).Google Scholar
Amano, H., Kitoh, M., Hiramatsu, K. and Akasaki, I., I., Jpn. J. Appl. Phys. 28, p. L2112 (1989).Google Scholar
Molnar, R.J., Singh, R. and Moustakas, T.D., Appl. Phys. Lett. 66, p. 268 (1995).Google Scholar
Wang, C. and Davis, R.F., Appl. Phys. Lett. 63, p. 990 (1993).Google Scholar
Landgren, G., Rask, M., Andersson, S.G. and Lundberg, A., J. Cryst. Growth 93, p. 646 (1988).Google Scholar
Rask, M., Landgren, G., Andersson, S.G. and Lundberg, A., J. Electron. Mater. 17, p. 311 (1988).Google Scholar
Dildey, F., Shier, M. and Ebbinghaus, G., J. Electrochem. Soc. 139, p. 1193 (1992).Google Scholar
Tews, H., Neumann, R., Humer-Hager, T. and Treichler, R., J. Appl. Phys. 68, p. 1318 (1990).Google Scholar
Kozen, A., Nojima, S., Tenmyo, J. and Asahi, H., J. Appl. Phys. 59, p. 1156 (1986).Google Scholar
Tamamura, K., Ohhata, T., Kawai, H. and Kojima, C., J. Appl. Phys. 59, p. 3549 (1986).Google Scholar
4. Ohkubo, M., Osabe, J., Shiojima, T., Yamaguchi, T. and Ninomiya, T., J. Cryst. Growth 170, p. 177 (1997).Google Scholar
Timmons, M.L., Chiang, P.K. and Hattangady, S.V., J. Cryst. Growth 77, p. 37 (1986).Google Scholar
5. Yi, G.-Y. and Wessels, B.W., Appl. Phys. Lett. 70, p. 357 (1997).Google Scholar
See also: Redwing, J.M., Kuech, T.F., Gordon, D.C., Vaarstra, B.A. and Lau, S.S., J. Appl. Phys. 76, p. 1585 (1994).Google Scholar
6. (a) Kuech, T.F., Wang, P.-J., Tischler, M.A., Potemski, R., Scilla, G.J. and Cardone, F., J. Cryst. Growth 93, p. 624 (1988).Google Scholar
(b) Kondo, M., Anayama, C, Sekiguchi, H. and Tanahashi, T., J. Cryst. Growth 141, p. 1 (1994).Google Scholar
(c) Courmont, S., Maurel, P., Grattepain, C. and Garcia, J.C., Appl. Phys. Lett. 64, p. 1371 (1994).Google Scholar
(d) Abemathy, C.R., Wisk, P.W., Pearton, S.J., and Ren, F., Appl. Phys. Lett. 62, p. 258 (1993).Google Scholar
7. Hatano, A., Izumiya, T. and Ohba, Y., Appl. Phys. Lett. 58, p. 1488 (1991). J. Cryst. Growth 115, p. 455 (1991).Google Scholar
8. Bradley, D.C., Hursthouse, M.B., Ibrahim, A.A., Malik, K.M.A., Motevalli, M., Moseler, R., Powell, H., Runnacles, J.D. and Sullivan, A.C., Polyhedron 9, p. 2959 (1990).Google Scholar
9. Wannagat, U. and Kuckertz, H., Angew. Chem., Int. Ed. Engl. 2, p. 47 (1963).Google Scholar
Wannagat, U., Autzen, H., Kuckertz, H. and Wismar, H.-J., Z. Anorg. Allg. Chem. 394, p. 254 (1972).Google Scholar
10. Andersen, R.A. and Wilkinson, G., J. Chem. Soc, Dalton Trans. p. 809 (1977).Google Scholar
11. Ashby, E.C., Fernholt, L., Haaland, A., Seip, R. and Smith, R.S., Acta. Chem. Scand. A 34, p. 213 (1980).Google Scholar
12. Polynuclear complexes with three-coordinate magnesium: Chang, C.-C., Her, T.-H., Li, M.-D., Williamson, R., Lee, G.-H., Peng, S.-M. and Wang, Y., Inorg. Chem. 34, p. 4296 (1995).Google Scholar
Ruhlandt-Senge, K., Inorg. Chem. 34, p. 3499 (1995).Google Scholar
Clegg, W., Henderson, K.W., Mulvey, R.E. and O'Neil, P.A., J. Chem. Soc, Chem. Commun. p. 769 (1994).Google Scholar
Her, T.-Y., Chang, C.-C., Lee, G.-H., Peng, S.-M. and Wang, Y., Inorg. Chem. 33, p. 99 (1994).Google Scholar
Veith, M., Spaniol, A., Pöhlmann, J., Gross, F. and Huch, V., Chem. Ber. 126, p. 2625 (1993).Google Scholar
Arduengo, A.J. III, Dias, H.V.R., Davidson, F. and Harlow, R.L., J. Organomet. Chem. 462, p. 13 (1993).Google Scholar
Her, T.-Y., Chang, C.-C. and Liu, L.-K., Inorg. Chem. 31, p. 2291 (1992).Google Scholar
Westerhausen, M. and Schwarz, W., Z. Anorg. Allg. Chem. 609, p. 39 (1992).Google Scholar
Engelhardt, L.M., Jolly, B.S., Junk, P.C., Raston, C.L., Skelton, B.W. and White, A.H., Aust. J. Chem. 39, p. 1337 (1986).Google Scholar
Atwood, J.L. and Smith, K.D., J. Am. Chem. Soc. 96, p. 994 (1974).Google Scholar
13.Ionic compounds containing three-coordinate magnesium: Waggoner, K.M. and Power, P.P., Organometallics 11, p. 3209 (1992).Google Scholar
Squiller, E.P., Whittle, R.R. and Richey, H.G. Jr, J. Am. Chem. Soc. 107, p. 432 (1985).Google Scholar
14. Cederberg, J.G., Sebestl, J.L., Winter, C.H. and Kuech, T.F., work in progress.Google Scholar