Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T09:01:56.439Z Has data issue: false hasContentIssue false

A New Hybrid Pvd/Omcvd Route to High‐Tc Superconducting Thin Films of Tl‐Ba‐Ca‐Cu‐O

Published online by Cambridge University Press:  28 February 2011

D. S. Richeson
Affiliation:
Department of Chemistry
L. M. Tonge
Affiliation:
Department of Chemistry
X. K. Wang
Affiliation:
Department of Physics and Astronomy
H. O. Marcy
Affiliation:
Department of Electrical Engineering and Computer Science
T. J. Marks
Affiliation:
Department of Chemistry Authors to whom correspondence should be addressed Science and Technology Center for Superconductivity and the Materials Research Center Northwestern University, Evanston IL 60208.
J. B. Ketterson
Affiliation:
Department of Physics and Astronomy Authors to whom correspondence should be addressed Science and Technology Center for Superconductivity and the Materials Research Center Northwestern University, Evanston IL 60208.
R. P. H. Chang
Affiliation:
Department of Materials Science and Engineering Authors to whom correspondence should be addressed Science and Technology Center for Superconductivity and the Materials Research Center Northwestern University, Evanston IL 60208.
C. R. Kannewurf
Affiliation:
Department of Electrical Engineering and Computer Science Authors to whom correspondence should be addressed Science and Technology Center for Superconductivity and the Materials Research Center Northwestern University, Evanston IL 60208.
Get access

Abstract

Superconducting thin films of Tl‐Ba‐Ca‐Cu‐0 have been prepared by a unique hybrid technique that combines electron beam evaporation with organometallic chemical vapor deposition (OMCVD). Multilayer thin films of Ba‐Ca‐Cu‐O are prepared by sequential electron beam evaporation of BaF2, CaF2, and Cu sources onto single crystal MgO (100) or yttria‐stabilized zirconia (YSZ) substrates followed by annealing in a water vapor‐saturated oxygen atmosphere. Thallium is then incorporated into these films in either of two ways: (1) via OMCVD using thallium(cyclopentadienide) as the source, or (2) rapid annealing of the Ba‐Ca‐Cu‐O film in the presence of bulk thallium superconductor. The resultant films primarily consist of single phase TlBa2Ca2Cu3Ox with the Cu‐O planes preferentially oriented parallel to the substrate surface. Resistivity measurements indicate superconducting onset temperatures above 120 K with zero resistance by 104 K. By eliminating the water vapor anneal, residual fluoride, originating from the sources, may be left in the film. This leads to formation of predominantly c‐axis oriented crystallites of the TlBa2CaCu2Ox phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zheng, Z. Z. and Hermann, A. M., Nature, 332, 55 and 138 (1988).Google Scholar
2 Kondok, S., Ando, Y., Onoda, M., Sato, M., and Akimitsu, J., Solid State Commun. 65, 1329 (1988).Google Scholar
3 Parkin, S. S. P., Lee, V. Y., Engler, E. M., Nazzal, A. I., Huang, T. C., Gorman, G., Savoy, R., and Beyers, R., Phys. Rev. Lett. 60, 2539 (1988).Google Scholar
4 Schuller, I. K. and Jorgensen, J. D., Mater. Res. Bull. XIV, 27 (1989), and references therein.Google Scholar
5 Sleight, A. W., Subramanian, M. A., and Torardi, C. C., Mater. Res. Bull. XIV, 45 (1989), and references therein.Google Scholar
6 Ichikawa, Y., Adachi, H., Setsune, K., Hatta, S., Hirochi, K., and Wasa, K., Appl. Phys. Lett. 53, 919 (1988).Google Scholar
7 Nakao, M., Yuasa, R., Nemoto, M., Kuhawara, H., Mukaida, H., and Mizukami, A., Jpn. J. Appl. Phys. 27, L849 (1988).Google Scholar
8 Lee, W. Y., Lee, V. Y., Salem, J., Huang, T. C., Savoy, R., Bullock, D. C., and Parkin, S. S. P., Appl. Phys. Lett. 53, 329 (1988).Google Scholar
9 Johs, B., Thompson, D., Ianno, N. J., Woolam, J. A., Liou, S. H., Hermann, A. M., Zheng, Z. Z., Kiebl, W., Shams, Q., Fei, X., Sheng, L., and Liu, Y. H., Appl. Phys. Lett. 54, 1810 (1989).Google Scholar
10 Shih, I. and Qui, C. X., Appl. Phys. Lett. 53, 523 (1988).Google Scholar
11 Ginley, D. S., Kwak, J. F., Hellmer, R. P., Baughman, R. J., Venturi, E. L., and Morosin, B., Appl. Phys. Lett. 53, 406 (1988).Google Scholar
12 Ginley, D. S., Kwak, J. F., Hellmer, R. P., Baughman, R. J., Venturi, E. L., Mitchell, M. A., and Morosin, B., Physica C 156, 592 (1988).Google Scholar
13 Richeson, D. S., Tonge, L. M., Zhao, J., Zhang, J., Marcy, H. O., Marks, T. J., Wessels, B. W., and Kannewurf, C. R., Appl. Phys. Lett. 54, 2154 (1989).Google Scholar
14 Wang, X. K., Sheng, K. C., Lee, S. J., Shen, Y. H., Song, S. N., Li, D. X., Chang, R. P. H., and Ketterson, J. B., Appl. Phys. Lett. 54, 1573 (1989).Google Scholar
15 Chan, S.‐W., Bagley, B. G., Greene, L. H., Giroud, M., Feldman, W. L., Jenkin II, K. R., and Wilkins, B. J., Appl. Phys. Lett. 53, 1443, (1988).Google Scholar
16 Lyding, J. W., Marcy, H. O., Marks, T. J., and Kannewurf, C. R., IEEE Trans. Instrum. Meas. 37, 76 (1988).Google Scholar
17 Joint Commitee for Powder Diffraction Standards (JCPDS), Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081, No.34284. Card International.Google Scholar
18 Gupta, A., Jagannathan, R., Cooper, E. I., Giess, E. A., Landman, J. I., and Hussey, B. W., Appl. Phys. Lett. 52, 2077 (1988).Google Scholar
19 Zhao, J., Marcy, H. O., Tonge, L. M., Wessels, B. W., Marks, T. J., and Kannewurf, C. R., Physica C 159, 710 (1989).Google Scholar
20 Clemens, B. M., Nieh, C. W., Kittl, J. A., Johnson, W. L., Josefowicz, J. Y., and Hunter, A. T., Appl. Phys. Lett. 53, 1871 (1988).Google Scholar