Skip to main content Accessibility help
×
Home

New High Resolution Liquid Crystal Electron Beam Resists

  • A. P. G. Robinson (a1), R. E. Palmer (a1), T. Tada (a2), T. Kanayamat (a2), M. T. Allen (a3), J. A. Preecel (a3) and K. D. M. Harris (a3)...

Abstract

We report the development of a new family of electron beam resists based on liquid crystalline polysubstituted derivatives of triphenylene. These new resists show excellent performance in terms of both high resolution and high durability to plasma etching. Films of the derivatives have been produced in a controlled manner via room temperature spin coating on hydrogen terminated silicon substrates. The dissolution behaviour of the derivatives in various organic solvents was altered by exposure to a 20 keV electron beam. The solubility of the derivative hexapentyloxytriphenylene, in polar solvents, was substantially increased by electron doses greater than ∼ 3 × 10-4 C/cm2 (positive tone behaviour). Doses greater than ∼ 2.5 × 10-3 C/cm2 led to negative tone behaviour in both polar and non-polar solvents. Other derivatives also demonstrated a reduction in their dissolution rate for doses between ∼ 1 × 10-3 and ∼ 7 × 10-3 C/cm2. The derivative sensitivity was found to be roughly proportional to the molecular mass. Negative tone patterns were found to have an etch durability ∼ 70 % greater than that of a conventional novolac based negative tone resist (SAL601). The performance of these new resists has been demonstrated by the definition of line and space patterns with a resolution of ∼ 14 nm, whilst structures with an aspect ratio of.∼ 50 to 1 were etched into the silicon substrate.

Copyright

References

Hide All
[1] Fabrizio, E. Di, Grella, L., Baciocchi, M., Gentili, M., Ascoli, C., Cappella, B., Frediani, C. and Morales, P., J. Vac. Sci. Technol. B, 15, 2892 (1997).
[2] Shoji, H., Nakata, Y., Mukai, K., Sugiyama, Y., Sugawara, M., Yokoyama, N. and Ishikawa, H., Appl. Phys. Lett., 71, 193 (1997).
[3] Tang, Y., Ni, W.-X., Torres, C.M. Sotomayor and Hansson, G.V., Electronics Letters, 31, 1385 (1995).
[4] Smith, R.A. and Ahmed, H., Appl. Phys. Lett., 71, 3838 (1997).
[5] Ishikuro, H. and Hiramoto, T., Appl. Phys. Lett, 71, 3691 (1997).
[6] Peckerar, M.C., Perkins, F.K., Dobisz, E.A. and Glembocki, O.J., Handbook of Microlithography, Micromachining and Microfabrication Vol. 1, Rai-Choudhury, P., ed., (IEE, London, 1997), p. 686.
[7] Rogers, J.A., Paul, K.E., Jackman, R.J. and Whitesides, G.M., Appl. Phys. Lett., 70, 2658 (1997).
[8] McCord, M.A. and Rooks, M.J., Handbook of Microlithography, Micromachining and Microfabrication Vol. I, Rai-Choudhury, P., ed., (IEE, London, 1997), Ch. 2 p. 139–.
[9] Namastu, H., Kurihara, K., Nagase, M. and Makino, T., Appl. Phys. Lett., 70, 619 (1997).
[10] Yoshiiwa, M., Kageyama, H., Shirota, Y., Wakaya, F., Gamo, K. and Takai, M., Appl. Phys. Lett., 69, 2605 (1996).
[11] Yamaguchi, T., Namatsu, H., Nagase, M., Yamazaki, K. and Kurihara, K., Appl. Phys. Lett., 71, 2388 (1997).
[12] Fujita, J., Ohnishi, Y., Ochiai, Y. and Matsui, S., Appl. Phys. Lett., 68, 1297 (1996).
[13] Manako, S., Fujita, J., Ochiai, Y., Nomura, E., Matsui, S., Jpn. J. Appl. Phys., 36, 7773 (1997).
[14] Fujita, J., Watanabe, H., Ochiai, Y., Manako, S., Tsai, J.S. and Matsui, S., Appl. Phys. Lett., 66, 3064 (1995).
[15] Tada, T. and Kanayama, T., Jpn. J. Appl. Phys., 35, L63 (1996).
[16] Robinson, A.P.G., Palmer, R.E., Tada, T., Kanayama, T. and Preece, J.A., Appl. Phys. Lett., 72, 1302 (1998).
[17] Robinson, A.P.G., Palmer, R.E., Tada, T., Kanayama, T., Preece, J.A., Philp, D., Jonas, U. and Deiderich, F., Chem. Phys. Lett., 289, 586 (1998).
[18] Lercel, M.J., Craighead, H.G., Parikh, A.N., Seshadri, K. and Allara, D.L., Appl. Phys. Lett., 68, 1504 (1996).
[19] Whelan, C.S., Lercel, M.J., Craighead, H.G., Seshadri, K. and Allara, D.L., Appl. Phys. Lett., 69, 4245 (1996).
[20] Chen, W. and Ahmed, H., Appl. Phys. Lett., 62, 1499 (1993).
[21] Chen, W. and Ahmed, H., Appl. Phys. Lett., 63, 1116 (1993).
[22] Cumming, D.R.S., Thoms, S., Beaumont, S.P. and Weaver, J.M.R., Appl. Phys. Lett., 68, 322 (1996).
[23] Robinson, A.P.G., Palmer, R.E., Tada, T., Kanayama, T., Allen, M.T., Preece, J.A. and Harris, K.D.M, J. Phys. D., 32, L75 (1999).
[24] Boden, N., Borner, R.C., Bushby, R.J., Cammidge, A.N. and Jesudason, M.V., Liquid Crystals, 15, 851 (1993).
[25] Allen, M. T., Preece, J.A. and Harris, K.D.M, Liquid Crystals, (In Press).
[26] Manako, S., Fujita, J- I., Ochiai, Y., Nomura, E. and Matsui, S., Jpn. J. Appl. Phys., 36, 7773 (1997).
[27] Tada, T. and Kanayama, T., J. Vac. Sci. Technol. B, 13, 2801 (1995).
[28] The contrast is equal to (log10(D2/D1 )-) where D2 and D1 are the doses at which the extrapolation of the linear section of the rising response curve intersects with the 100% and 0% levels for film retention, respectively.

New High Resolution Liquid Crystal Electron Beam Resists

  • A. P. G. Robinson (a1), R. E. Palmer (a1), T. Tada (a2), T. Kanayamat (a2), M. T. Allen (a3), J. A. Preecel (a3) and K. D. M. Harris (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed