Skip to main content Accessibility help
×
Home

A New High Performance CA Resist for E-beam Lithography

  • Ranee Kwong (a1), Wu-Song Huang (a1), Wayne Moreau (a1), Robert Lang (a1), Christopher Robinson (a1), David R. Medeiros (a2), Ari Aviram (a2), Richard C. Guarnieri (a2) and Marie Angelopoulos (a2)...

Abstract

Three major lithographic applications have emerged for electron beam exposure tools: optical mask fabrication, direct writing for device fabrication, and more recently projection e-beam printing. The traditional mask making process uses poly(butenesulfone) resist. A wet etch process was adopted to generate patterns on chrome. Recently, shrinking dimensions, optical proximity correction features, and the complexity of phase shift masks have forced the industry to a chrome dry etch process. ZEP, a poly(methyl α-chloroacrylate-co-α-methylstyrene) based resist, has been well accepted for most of the >180 nm device mask making. The acceptance of ZEP comes in spite of its low contrast, marginal etch resistance, organic solvent development, and concerns of resist heating associated with its high dose requirements. These issues have spawned interest in using chemically amplified resist (CAR) systems for direct write and mask making applications. We have developed a high contrast resist based on ketal protecting groups, KRS-XE, which is robust against airborne contamination and can be used for all forms of e-beam exposure in both chrome mask and silicon processing. This high contrast resist is processed with aqueous base developer and has a wide bake latitude. The development of KRS-XE has provided the capability of fabricating chrome masks for future generation (< 180 nm) devices and has potential for use with projection beam exposure systems.

Copyright

References

Hide All
1. Lui, M., Coleman, T., Sauer, C., Proc. SPIE 3546, 98 (1998).
2. Stanton, S., Lidddle, J.. Waskiewiscz, W., and Novembre, A., J. Vac. Sci. and Tech. B16, 3197 (1998).10.1116/1.590350
3. Kwon, K., Kang, S., Park, S., Sung, H., Kim, D., and Moon, J., J. Materials Science, Letters 18, 1197 (1999).
4. Nishida, T., Jap. J. Appl. Phys. 31, 4508 (1992).10.1143/JJAP.31.4508
5. Cha, B., Kim, J., Kim, B., Choi, S., Yoon, H., and Soon, J., Proc. SPIE 3546, 55 (1998).
6. Babin, S., Proc. SPIE 3546, 389 (1998).10.1117/12.332875
7. (a) Wasiewicz, W., Harriott, L., Liddle, J., Stanton, S., Berger, S., Munron, E., and Zhu, X., Microelectronic Engineering 41, 215 (1998). (b) M. Sato, K. Ohmori, K. Ishikawa, T. Nakayama, A. Novembre, and L. Ocola, Proc. SPIE 3676, 227 (1999).10.1016/S0167-9317(98)00049-5
8. Pfeiffer, H., et al., J. Vac. Sci. and Tech., to be published, (1999).
9. Moreau, W., Semiconductor Lithography, Plenum Press, 1989, pg. 34.
10. Ito, H. and Willson, C., Polymer Eng and Sci. 23, 1012 (1983).
11. Hinsberg, W., McDonald, S., Clecak, N. and Snyder, C., Proc. SPIE 1672, 24 (1992)
12. Arai, M., Proc. SPIE 2512, 74 (1995).
13. Seeger, D., Solid State Technology, June 1997, p. 115.
14. Nalamasu, O., Houlihan, F., Cirelli, R., Timko, A., Watson, G., Hutton, R., Kometani, J., Reichmanis, E., Gabor, A., Medina, A., and Slater, S., J. Vac. Sci. and Tech. B16, 3716 (1998).
15. Tanaka, T., Morigami, M., and Atoda, N., Jap. J. Appl. Phys. 32, 12B, 6059 (1993).
16. Sakamizu, T., Yamaguchi, H., Shirashi, H., Murai, F., Ueno, T., J. Vac. Sci. and Tech. B11, 2812 (1993).10.1116/1.586607
17. Ito, H. and Sherwood, M., J. Photopolymer Sci. 12, 625 (1999).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed