Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-25T12:55:44.606Z Has data issue: false hasContentIssue false

New Fe-Ni Based Metal-Metalloid Glassy Alloys Prepared by Mechanical Alloying and Rapid Solidification

Published online by Cambridge University Press:  10 February 2011

J. J. Suñol
Affiliation:
Grup de Recerca en Materials, Universität de Girona, Santaló s/n. 17071-Girona, Spain.
M. T. Clavaguera-Mora
Affiliation:
Grup de Física de Materials I, Dept de Física, Universität Autònoma de Barcelona, 08193-Bellaterra, Spain.
N. Clavaguera
Affiliation:
Grup de Fisica de l'Estat Sòlid, Dept ECM, Facultat de Fisica, Universität de Barcelona, Diagonal 647, 08028-Barcelona, Spain.
T. Pradell
Affiliation:
Dept Fisica, ESAB ads. Universität Politècnica de Catalunya, Urgell 187, 08036-Barcelona, Spain.
Get access

Abstract

Mechanical alloying and rapid solidification are two important routes to obtain glassy alloys. New Fe-Ni based metal-metalloid (P-Si) alloys prepared by these two different processing routes were studied by differential scanning calorimetry and transmission Mössbauer spectroscopy. Mechanical alloyed samples were prepared with elemental precursors, and different nominal compositions. Rapidly solidified alloys were obtained by melt-spinning. The structural analyses show that, independent of the composition, the materials obtained by mechanical alloying are not completely disordered whereas fully amorphous alloys were obtained by rapid solidification. Consequently, the thermal stability of mechanically alloyed samples is lower than that of the analogous material prepared by rapid solidification. The P/Si ratio controls the magnetic interaction of the glassy ribbons obtained by rapid solidification. The experimental results are discussed in terms of the degree of amorphization and crystallization versus processing route and P/Si ratio content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Güntherodt, H.-J. and Beck, H., editors, Glassy Metals I, Springer Verlag, Berlin, 1982;Google Scholar
Beck, H. and Güntherodt, H.-J., editors, Glassy Metals II, Springer Verlag, Berlin, 1983.Google Scholar
2. Pak, H.R., Chu, J., Angelis, R.J. and Okazaki, K., Mater Sei Eng, A118, p. 147 (1989).Google Scholar
3. Miura, H., Isa, S., Omuro, K., J. Non-Cryst. Solids, 117–118, p. 741 (1990).Google Scholar
4. Brand, R.A., NORMOS programs, version 1990.Google Scholar
5. Nesse, J. and Rübartsch, A., J. Phys. E: Sci. Instrum. 7, p. 526 (1974).Google Scholar
6. Vanderberghe, R.E., Gryffroy, D. and De Grave, E., Nuc. Inst & Methods in Phys Res., B26, p. 603 (1987).Google Scholar
7. Clavaguera-Mora, M.T., Suñol, J.J. and Clavaguera, N. in Nanostructured and Non-Crystalline Materials, edited by Vázquez, M. and Hernando, A., (World Scientific, Singapore, 1995), p. 4448.Google Scholar
8. Pradell, T., Clavaguera, N., Suñol, J.J. and Clavaguera-Mora, M.T., in Proc. Int. Conf. on the Applications of Mòssbauer Effect ICAME95, edited by Ortali, I. (Società Italiana di Fisica, Bologna 1996), pp. 433436.Google Scholar
9. Suñol, J.J., PhD thesis, Universität Autònoma de Barcelona, 1996.Google Scholar
10. Pradell, T., Suñol, J.J., Clavaguera-Mora, M.T. and Clavaguera, N., Materials Science Forum, 235–238, p. 169(1997).Google Scholar
11. Ozawa, T., Bull. Chem. Soc. Japan 38, p. 1181 (1965).Google Scholar
12. Suriñach, S., Suñol, J.J. and Barò, M.D., Mater Sei Eng, A181/A182, p. 1285 (1994).Google Scholar
13. Mahmood, S.M., Rousan, K.H., Lehlooh, A.F. and Mahmoud, S., Solid State Communications 95, p. 879(1995).Google Scholar
14. Sumiyana, K., Phys. Stat. Sol. 126, p. 291 (1991).Google Scholar