Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T06:13:39.968Z Has data issue: false hasContentIssue false

Neutral Impurity Disordering of III-V Quantum well Structures for Optoelectronic Integration

Published online by Cambridge University Press:  26 February 2011

J. H. Marsh
Affiliation:
Department of Electronics and Electrical Engineering, The University, Glasgow G12 8QQ, Scotland.
S. R. Andrew
Affiliation:
Department of Electronics and Electrical Engineering, The University, Glasgow G12 8QQ, Scotland.
S. G. Ayling
Affiliation:
Department of Electronics and Electrical Engineering, The University, Glasgow G12 8QQ, Scotland.
J. Beauvais
Affiliation:
Department of Electronics and Electrical Engineering, The University, Glasgow G12 8QQ, Scotland.
S. A. Bradshaw
Affiliation:
Department of Electronics and Electrical Engineering, The University, Glasgow G12 8QQ, Scotland.
A. C. Bryce
Affiliation:
Department of Electronics and Electrical Engineering, The University, Glasgow G12 8QQ, Scotland.
S. I. Hansen
Affiliation:
Department of Electronics and Electrical Engineering, The University, Glasgow G12 8QQ, Scotland.
R. M. De La Rue
Affiliation:
Department of Electronics and Electrical Engineering, The University, Glasgow G12 8QQ, Scotland.
R. W. Glew
Affiliation:
Department of Electronics and Electrical Engineering, The University, Glasgow G12 8QQ, Scotland.
Get access

Abstract

The neutral impurities boron and fluorine have been studied as species for impurity induced disordering. In the GaAs/AlGaAs system fluorine disordered multiple quantum well waveguide structures exhibited blue shifts of up to 100 meV in the absorption edge (representing complete disordering) accompanied by substantial changes, > 1%, in the refractive index. The absorption coefficient in partially disordered structures at near band-edge wavelengths was as low as 4.7 dB cm−1. Integrated extended cavity lasers have been fabricated with low losses (19 ± 8.4 dB cm−1) in the passive waveguide. Disordering of GalnAs/AlGalnAs and GalnAs/GalnAsP quantum well structures lattice matched to InP has also been investigated. The temperature stability of as-grown phosphorus-quaternary material is poor, with blue shifts of the exciton peak occuring at temperatures greater than 500°C, but the aluminium-quaternary is stable to at least 650°C. Large blue shifts (up to 90 meV for phosphorus quaternary and 45 meV for aluminium quaternary samples) were observed in the fluorine-implanted samples. The estimated loss in fluorine-disordered phosphorus quaternary samples is typically around 8 dB cm“−1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Deppe, D. G. and Holonyak, N. Jr:, J. Appl. Phys., 64, R93–R113 (1988).CrossRefGoogle Scholar
2. Marsh, J. H., Hansen, S. I., Bryce, A. C. and De La Rue, R. M., Optical and Quantum Electronics 23, S941 (1991)CrossRefGoogle Scholar
3. Suzuki, M., Tanaka, H., Akiba, S., Kushiro, Y., J. Lightwave Technol 6, 779 (1988).CrossRefGoogle Scholar
4. O'Neill, M., Bryce, A. C., Marsh, J. H., De La Rue, R. M., Roberts, J. S. and Jeynes, C., Appl. Phys. Lett., 55, 1373 (1989).CrossRefGoogle Scholar
5. O'Neill, M., Marsh, J. H., De La Rue, R. M., Roberts, J. S. and Gwilliam, R., Electron Lett, 26, 1613–5 (1990).CrossRefGoogle Scholar
6. Thornton, R. L., Mosby, W. J. and Paoli, T. L., IEEE J. Lightwave Technol., LT–6, 786 (1987).Google Scholar
7. van der Ziel, J. P., llegems, M. and Mikulyak, R. M., Appl. Phys. Lett., 67, 735 (1976).CrossRefGoogle Scholar
8. Hansen, S. I., Marsh, J. H., Roberts, J. S. and Gwilliam, R., Appl. Phys. Lett., 58, 13981400 (1991).CrossRefGoogle Scholar
9. Hansen, S. I., Marsh, J. H. and Roberts, J. S., IEE Proceedings Part J, (to be published).Google Scholar
10. Pape, I. J., LI Kam Wa, P., David, J. P. R., Claxton, P. A. and Robson, P. N., Electron. Lett., 24, 12171218 (1988).CrossRefGoogle Scholar
11. Pape, I. J., Li Kam Wa, P., Roberts, D. A., David, J. P. R., Claxton, P. A. and Robson, P. N., GaAs and Related Compounds 1988 (Inst Phys Conf Ser No 96) 397.Google Scholar
12. Razeghi, M., Archer, O. and Launay, F., Semicond. Sci. Technol., 2, 793 (1987).CrossRefGoogle Scholar
13. Nakashima, K., Kawaguchi, Y., Kawamura, Y., Imamura, Y., Appl. Phys. Lett. 52, 13831385 (1988).CrossRefGoogle Scholar
14. Pape, I. J., Li Kam Wa, P., David, J. P. R., Claxton, P. A., Robson, P. N. and Sykes, D., Electron. Lett., 24, 910911 (1988).CrossRefGoogle Scholar
15. Bradley, M. A., Julien, F. H., Gilles, J. P., Gao, Y., Rao, E. V. K., Razeghi, M. and Omnes, F., Electron. Lett., 26, 209 (1990).CrossRefGoogle Scholar
16. Tell, B., Johnson, B. C., Zyzkind, J. L., Brown, J. M., Sulhoff, J. W., Brown-Goebeler, K. F., Miller, B. I. and Koren, U., Appl. Phys. Lett., 52, 14281430 (1988).CrossRefGoogle Scholar
17. Sumida, H., Asahi, H., Jae Yu, S., Asami, K., Gonda, S., H. Tanoue. Appl. Phys. Lett., 54, 520522 (1989).CrossRefGoogle Scholar
18. Tell, B., Shah, J., Thomas, P. M., Brown-Goebeler, K. F., Giovanni, A. D., Miller, B. I. and Koren, U., Appl. Phys. Lett., 54, 1570 (1989).CrossRefGoogle Scholar
19. Bryce, A. C., Marsh, J. H., Gwilliam, R. and Glew, R. W., IEE Proc Part J (Optoelectronics), 138, 8790 (1991).CrossRefGoogle Scholar
20. Marsh, J. H., Bradshaw, S. A., Bryce, A. C., Gwilliam, R. and Glew, R. W., J. Electron. Mat., 20, 973978, 1991 CrossRefGoogle Scholar
21. Walker, R. G., Electron Lett, 21 (4), 208, 1857 (1988)Google Scholar
22. Dansas, P., J. Appl. Phys. 58 (1985) 2212.CrossRefGoogle Scholar
23. Moore, W. J., Hawkins, R. L. and Shanabrook, B. V., Physica 146B (1987) 65.Google Scholar
24. Fischer, D. W. and Yu, P. W., J. Appl. Phys. 59 (1986) 1952 CrossRefGoogle Scholar
25. Makita, Y. and Gonda, S., Appl. Phys. Lett. 17 (1976) 333.Google Scholar
26. Tell, B. and Brown-Goebeler, K. F., J. Appl. Phys. 62 813 (1987).CrossRefGoogle Scholar
27. Werner, J., Lee, T. P., Kapon, E., Colas, E., Stoffel, N. G., Schwarz, S. A., Schwarz, L. C. and Andreadakis, N. C., Appl. Phys. Lett., 57, 810 (1990).CrossRefGoogle Scholar
28. Mcllroy, P. W. A., Kurobe, A. and Uematsu, Y., IEEE J Quantum Electron, QE–21, 1958 (1985).Google Scholar
29. Andrew, S. R., Marsh, J. H., Holland, M. C. and Kean, A. H., submitted to Photonics Tech. Lett.Google Scholar