Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-17T07:12:28.515Z Has data issue: false hasContentIssue false

Near-Field Imaging of the Microwave Dielectric Properties of Single-Crystal PbTiO3 and Thin-Film Sr1−xBxTiO3

Published online by Cambridge University Press:  10 February 2011

Y.G. Wang
Affiliation:
Department of Physics, The George Washington University, Washington, DC, 20052
M.E. Reeves
Affiliation:
Department of Physics, The George Washington University, Washington, DC, 20052 Naval Research Laboratory, Washington, DC, 20375
W. Chang
Affiliation:
Naval Research Laboratory, Washington, DC, 20375
J.S. Horwitz
Affiliation:
Naval Research Laboratory, Washington, DC, 20375
W. Kim
Affiliation:
Naval Research Laboratory, Washington, DC, 20375
Get access

Abstract

A PbTiO3 crystal and Sr1−xBaxTiO3 films have been studied by near-field scanning microwave microscopy (SMM). In the PbTiO3 crystal, dielectric properties and topography are obtained simultaneously. In Sr1−xBaxTiO3 films, local variations and sample-to-sample differences are observed. To quantitatively determine local dielectric permittivity and loss, we also carry out theoretical calculations on dependence of resonant frequency and quality factor on dielectric constants of bulk samples and thin films. Good agreements between experimental and theoretical results are obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gao, C., Xiang, X.D., Rev.Sci.Instrum., 69, 3846 (1998).10.1063/1.1149189Google Scholar
Lu, Y., Wei, T., Duewer, F., Lu, Y., Ming, N.B., Schultz, P.G. and Xiang, X.D., Science, 276, 2004 (1997).10.1126/science.276.5321.2004Google Scholar
[2] Steinhauser, D.E., Vlahacos, C.P., Wellstood, F.C., Anlage, S.M., Canedy, C., Ramesh, R., Stanishevsky, A. and Melngailis, J., Appl.Phys.Lett., 75, 3180 (1999).10.1063/1.125270Google Scholar
[3] Cho, Y., Kazuta, S. and Matsuura, K., Appl.Phys.Lett., 75, 2883 (1999).Google Scholar
[4] Duewer, F., Gao, C., Takeuchi, I., Xiang, X.D., Appl.Phys.Lett., 74, 2696 (1999).10.1063/1.123940Google Scholar
[5] Vlahacos, C.P., Steinhauser, D.E., Dutta, S.K., Feenstra, B.J., Anlage, S.M. and Well-stood, F.C., Appl.Phys.Lett., 72, 1778 (1997).10.1063/1.121182Google Scholar
[6] Turik, A.V., Phys.Stat.Sol., B94, 525 (1979).10.1002/pssb.2220940223Google Scholar
[7] Wang, Y.G., Dec, J. and Kleemann, W., J.Appl.Phys., 84, 6795 (1998).10.1063/1.369011Google Scholar
[8] Remeika, J.P. and Glass, A.M., Mater.Res.Bull. 5, 37 (1970).10.1016/0025-5408(70)90071-1Google Scholar
[9] Chang, W., Horwitz, J.S., Carter, A.C., Pond, J.M., Kirchoefer, S.W., Gilmore, C.M. and Chrisey, D.B., Appl.Phys.Lett., 74, 1033 (1999).10.1063/1.123446Google Scholar
[10] Hubert, C. and Levy, J., Appl.Phys.Lett., 73, 3229 (1998).10.1063/1.122727Google Scholar