Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T15:26:55.109Z Has data issue: false hasContentIssue false

Near-Bandgap Photoluminescence Decay Time in GaN Epitaxial Layers Grown on Sapphire

Published online by Cambridge University Press:  21 February 2011

A. Hangleiter
Affiliation:
4. Physikalisches Institut, Universität Stuttgart D-70550 Stuttgart, Germany E-mail: A.Hangleiter@physik.uni-stuttgart.de
J. S. Im
Affiliation:
4. Physikalisches Institut, Universität Stuttgart D-70550 Stuttgart, Germany E-mail: A.Hangleiter@physik.uni-stuttgart.de
T. Forner
Affiliation:
4. Physikalisches Institut, Universität Stuttgart D-70550 Stuttgart, Germany E-mail: A.Hangleiter@physik.uni-stuttgart.de
V. Härle
Affiliation:
4. Physikalisches Institut, Universität Stuttgart D-70550 Stuttgart, Germany E-mail: A.Hangleiter@physik.uni-stuttgart.de
F. Scholz
Affiliation:
4. Physikalisches Institut, Universität Stuttgart D-70550 Stuttgart, Germany E-mail: A.Hangleiter@physik.uni-stuttgart.de
Get access

Abstract

Using picosecond time-resolved photoluminescence we have studied the decay time of excess carriers in GaN epitaxial layers over a wide range of temperatures from 4 K up to 400 K. At low temperature, a thermal dissociation of donor-bound excitons is observed. At higher temperatures up to room temperature, the luminescence decay at moderate excitation is governed by trapping of photogenerated electrons in ionized shallow donor levels. Using measured luminescence intensities to determine the quantum efficiency, we obtain the radiative lifetime of free excitons from low temperature up to room temperature. We use these data to determine the radiative recombination coefficient and the interband momentum matrix element.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Harris, C. I., Monemar, B., Amano, H., and Akasaki, I., Appl. Phys. Lett. 67, 840 (1995).Google Scholar
2 Shan, W., Xie, X. C., Song, J. J., and Goldenberg, B., Appl. Phys. Lett. 67, 2512 (1995).Google Scholar
3 Merz, C., Kunzer, M., and Kaufmann, U., to be published.Google Scholar
4 Lasher, G. and Stern, F., Phys. Rev. 133, A553 (1964).Google Scholar
5 Meyer, B. K., Volm, D., Graber, A., Alt, H. C., Detchprohm, T., Amano, K., and Akasaki, I., Solid State Commun. 95, 597 (1995).Google Scholar
6 Hangleiter, A., in Proc. 20th Intern. Conf. on the Physics of Semiconductors, edited by Anastassakis, E. and Joannopoulos, J. D. (World Scientific, Singapore, 1990), Vol. 3, p. 2566.Google Scholar
7 Matsubara, K. and Takagi, T., Jpn. J. Appl. Phys. 22, 511 (1982).Google Scholar
8 Fang, W. and Chuang, S. L., Appl. Phys. Lett. 67, 751 (1995).Google Scholar
9 Meney, A. T. and O”Reilly, E. P., Appl. Phys. Lett. 67, 3013 (1995).Google Scholar