Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T06:48:40.845Z Has data issue: false hasContentIssue false

Native point defects in multicomponent transparent conducting oxides

Published online by Cambridge University Press:  05 February 2014

Altynbek Murat
Affiliation:
Department of Physics, Missouri University of Science & Technology, Rolla, MO 65409, USA
Julia E. Medvedeva
Affiliation:
Department of Physics, Missouri University of Science & Technology, Rolla, MO 65409, USA
Get access

Abstract

The formation of native point defects in layered multicomponent InAMO4 oxides with A3+=Al or Ga, and M2+=Ca, Mg, or Zn, is investigated using first-principles density functional calculations. We calculated the formation energy of acceptor (cation vacancies, acceptor antisites) and donor (oxygen vacancy, donor antisites) defects within the structurally and chemically distinct layers of InAMO4 oxides. We find that the antisite donor defect, in particular, the A atom substituted on the M atom site (AM) in InAMO4 oxides, have lower formation energies, hence, higher concentrations, as compared to those of the oxygen vacancy which is know to be the major donor defect in binary constituent oxides. The major acceptor (electron “killer”) defects are cation vacancies except for InAlCaO4 where the antisite CaAl is the most abundant acceptor defect. The results of the defect formation analysis help explain the changes in the observed carrier concentrations as a function of chemical composition in InAMO4, and also why the InAlZnO4 samples are unstable under a wide range of growing conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ginley, D. S. and Bright, C., MRS Bulletin. 25, 15 (2000).CrossRefGoogle Scholar
Facchetti, A. and Marks, T., Transparent Electronics: From Synthesis to Applications (John Wiley & Sons, New York, 2010).CrossRefGoogle Scholar
Ginley, D.S., Hosono, H., Paine, D.C., Handbook of Transparent Conductors (Springer, 2011).CrossRefGoogle Scholar
Medvedeva, J. E., Appl. Phys. A 89, 43 (2007).CrossRefGoogle Scholar
Walsh, A., Silva, J. D., and Wei, S., J. Phys.: Condens. Matter 23, 334210 (2011).Google Scholar
Wimmer, E., Krakauer, H., Weinert, M., and Freeman, A. J., Phys. Rev. B 24, 864 (1981).CrossRefGoogle Scholar
Weinert, M., Wimmer, E., and Freeman, A. J., Phys. Rev. B 26, 4571 (1982).CrossRefGoogle Scholar
Asahi, R. and Mannstadt, W. and Freeman, A. J., Phys. Rev. B 59, 7486 (1999).CrossRefGoogle Scholar
Kato, V. K., Kawada, I., Kimizuka, N., and Katsura, T., Krist, Z. 141, 314 (1975).Google Scholar
Kimizuka, N. and Mohri, T., J. Solid State Chem 60, 382 (1985).CrossRefGoogle Scholar
Kimizuka, T. M. N. and Matsui, Y., J. Solid State Chem. 74, 98 (1988).CrossRefGoogle Scholar
Murat, A. and Medvedeva, J. E., Phys. Rev. B 85, 155101 (2012).CrossRefGoogle Scholar
Medvedeva, J. E., Europhys. Lett. 78, 57004 (2007).CrossRefGoogle Scholar
Osorio-Guillen, J., Lany, S., Barabash, S. V., Zunger, A., Phys. Rev. Lett. 96, 107203 (2006).CrossRefGoogle Scholar
Lany, S. and Zunger, A., Phys. Rev. Lett. 98, 045501 (2007).CrossRefGoogle Scholar
Murat, A., Adler, A., Mason, T.O., Medvedeva, J. E., J. Amer. Chem. Soc. 135, 5685 (2013).CrossRefGoogle Scholar
Peng, H., Song, J.-H., Hopper, E.M., Zhu, Q., Mason, T.O., Freeman, A.J., Chem. Mat. 24, 106 (2012).CrossRefGoogle Scholar
Murat, A. and Medvedeva, J. E., Phys. Rev. B 86, 085123 (2012).CrossRefGoogle Scholar
Omura, H., Kumomi, H., Nomura, K., Kamiya, T., Hirano, M., Hosono, H., J. Appl. Phys. 105 (2009).Google Scholar
Medvedeva, J. E. and Hettiarachchi, C. L., Physical Review B 81, 125116 (2010).CrossRefGoogle Scholar
Orita, M., Takeuchi, M., Sakai, H., and Tanji, H., Jpn. J. Appl. Phys. 34, L1550 (1995).CrossRefGoogle Scholar