Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T20:57:33.192Z Has data issue: false hasContentIssue false

Narrow Si doping distributions in 6-doped GaAs, Al0.3Ga0.7As and Quantum Wells grown by Gas Source Molecular Beam Epitaxy

Published online by Cambridge University Press:  28 February 2011

J.E. Cunningham
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ.,07733
T.H. Chin
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ.,07733
B. Tell
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ.,07733
W. Jan
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ.,07733
J. A. Ditzenberger
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ.,07733
T. Y. Kuo
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ.,07733
C. Fonstad
Affiliation:
Massachusetts Institute of Technology, Cambridge, Mass.,02139
Get access

Abstract

We report very small interdiffusion and surface segregation of Si in δ-doped GaAs, A10.3Gao.7As and Quantum Wells grown at 580 C by Gas Source Molecular Beam Epitaxy. Capacitance-Voltage profiles of δ-doped layers are 38 Å wide for growth at 580 C and further, insignificant profile narrowing is observed at 530C and below. Much wider profiles are observed at equivalent substrate temperature for As4 growth. Atomic diffusion of Si in δ-doped Al0.3Ga0.7As is found to have a rate of D0=5× 10cm2/sec with an activation energy of 1.8 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] English, J. H., Gossard, A. C., Stormer, H.L. and Baldwin, K. W., Appl. Phys. Lett. 50, 1826 (1987).Google Scholar
[2] Cunningham, J. E., Tsang, W. T., Timp, G., Schubert, E.F. and Chiu, T.H. Phys. Rev. B 37 4317 (1988).Google Scholar
[3] Shayegan, M., Goldman, V.J., Jiang, C., Sajoto, T. and Santos, M., Appl. Phys. Lett. 50, 1086 (1988).Google Scholar
[4] Schubert, E. F., Cunningham, J. E. and Tsang, W. T. Phys. Rev. B 36, 1348,1987.Google Scholar
[5] Lee, H., Shaff, W. J., Wicks, G. W., L F. Eastman, Calawa, A. R., Inst. Phys. Conf.Ser. No 74, 321 (1985).Google Scholar
[6] Zrenner, A., Koch, F. and Ploog, K, Proceedings on the Seventh International Conference on the Electronic Properties of Two Dimensional Systems, Santa Fe, p. 341,(1987).Google Scholar
[7] Schubert, E. F., Stark, J. B., Ullich, B. and Cunningham, J. E., Appl. Phys. Lett., 52, 1508 (1988).Google Scholar
[8] Cunningham, J. E., Timp, G., Chang, A. M., Chiu, T. H., Jan, W., Schubert, E. F. and Tsang, W. T., Proceedings of the MBE Workshop V, p. 342, (1988), Sapporo, Jpn.Google Scholar
[9] Harris, J. J., Beall, R.B., Clegg, J. B., Foxon, C. T., Battersby, S. J., Lacklison, D. E., Hellon, C. M. and Duggan, G., “Proceeding of the MBE Workshop V”, p.345, Sapporo, Jpn. (1988)Google Scholar
[10] The highest mobility GaAs obtained to date have been grown at substrate temperatures above 580C. See Cunningham, J. E., Chiu, T. H., Timp, G., Agyekum, E. and Tsang, W. T., Appl. Phys. Lett 53, 1285, (1988) and N. Chand, R. C. Miller, A. M. Sergent, S. K Sputz and D. V. Lang, Appl. Phys. Lett. 52, 1721 (1988).CrossRefGoogle Scholar
[11] Kuo, T. Y., Cunningham, J. E., Timp, G., Tsang, W. T., Schubert, E. F., Jan, W. and Fonstad, C., Proceedings of the 1988 Electronics Devices and Materials Symposium, p. 108, (1988).Google Scholar
[12] Heddrick, R. private communication.Google Scholar
[13] Chai, Y. G., Chow, R. and Wood, C. E. C., Appl. Phys. Lett. 39, 800, (1981).Google Scholar
[14] Schubert, E. F., Tu, C. W., Kropf, R., Kuo, J. M., L Lundardi, Appl. Phys. Lett. in press.Google Scholar