Skip to main content Accessibility help
×
Home

Nanostructured Silicon-based Composites for High Temperature Thermoelectric Applications

  • Sabah Bux (a1), Richard B Kaner (a2) and Jean-Pierre Fleurial (a3)

Abstract

Recently nanostructured bulk silicon and silicon-germanium have achieved large increases in the thermoelectric figure of merit (ZT). The ZT enhancement is attributed to a significant reduction in the lattice thermal conductivity while maintaining relatively high carrier mobility. Silicon-based thermoelectric devices are attractive due to their low-toxicity, thermal stability, low density, relative abundance and low cost of production. Although significant enhancements in ZT have been achieved using the nanostructuring route, additional decoupling of the thermal and electric transport terms is still necessary in order for silicon-based materials to be viable for thermoelectric applications such as waste heat recovery or radioisotope thermoelectric generators. It is theorized that additional increases in ZT could be achieved by forming composites with nanostructured inert inclusions to further scatter the heat-carrying phonons. Here we present the impact of insulating and conductive nanoparticle composites on ZT. The nanostructured composites are formed via ball milling and high pressure sintering of the nanoparticles. The thermoelectric properties and microstructure of the silicon-based composites are discussed.

Copyright

References

Hide All
1 Rowe, D., in CRC Handbook of Thermoelectrics (CRC Press, 2009).
2 Snyder, G. J. and Toberer, E. S., Nat. Mater. 7 (2), 105114 (2008).
3 Boukai, A. I., Bunimovich, Y., Tahir-Kheli, J., Yu, J. K., Goddard, W. A. and Heath, J. R., Nature 451 (7175), 168171 (2008).
4 Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A. and Yang, P., Nature 451 (7175), 163167 (2008).
5 Venkatasubramanian, R., Siivola, E., Colpitts, T. and O'Quinn, B., Nature 413 (6856), 597602 (2001).
6 Zhao, X. B., Ji, X. H., Zhang, Y. H., Zhu, T. J., Tu, J. P. and Zhang, X. B., Appl. Phys. Lett. 86 (6), 3 (2005).
7 Ji, X., He, J., Alboni, P., Su, Z., Gothard, N., Zhang, B., Tritt, T. M. and Kolis, J. W., Phys. Status Solidi-Rapid Res. Lett. 1 (6), 229231 (2007).
8 Hsu, K. F., S. Loo, Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K. and Kanatzidis, M. G., Science 303 (5659), 818821 (2004).
9 Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J. P. and Gogna, P., Adv. Mater. 19 (8), 10431053 (2007).
10 Dresselhaus, M. S., Gang, C., Zhifeng, R., Fleurial, J. P., Gogna, P., Tang, M. Y., Vashaee, D., Hohyun, L., Xiaowei, W., Joshi, G., Gaohua, Z., Dezhi, W., Blair, R., Bux, S. and Kaner, R., Materials Research Society Fall 2007 Meeting, Vol. 1044, 1044–U02 (2007)
11 Bux, S. K., Blair, R. G., Gogna, P. K., Lee, H., Chen, G., Dresselhaus, M. S., Kaner, R. B. and Fleurial, J.-P., Adv. Funct. Mater. 19 (15), 24452452 (2009).
12 Zhu, G. H., Lee, H., Lan, Y. C., Wang, X. W., Joshi, G., Wang, D. Z., Yang, J., Vashaee, D., Guilbert, H., Pillitteri, A., Dresselhaus, M. S., Chen, G. and Ren, Z. F., Phys. Rev. Lett. 102 (19), 196803 (2009).
13 Bux, S., Fleurial, J. P., Blair, R., Gogna, P., Caillat, T. and Kaner, R., Materials Research Society Spring 2009 Meeting, Vol. 1166, 1166–N1102 (2009).
14 Joshi, G., Lee, H., Lan, Y. C., Wang, X. W., Zhu, G. H., Wang, D. Z., Gould, R. W., Cuff, D. C., Tang, M. Y., Dresselhaus, M. S., Chen, G. and Ren, Z. F., Nano Lett. 8 (12), 46704674 (2008).
15 Wang, X. W., Lee, H., Lan, Y. C., Zhu, G. H., Joshi, G., Wang, D. Z., Yang, J., Muto, A. J., Tang, M. Y., Klatsky, J., Song, S., Dresselhaus, M. S., Chen, G. and Ren, Z. F., Appl. Phys. Lett. 93 (19), 3 (2008).
16 Scoville, N., Bajgar, C., Rolfe, J., Fleurial, J. P. and Vandersande, J., Nanostruct. Mater. 5 (2), 207223 (1995).
17 Mingo, N., Hauser, D., Kobayashi, N. P., Plissonnier, M. and Shakouri, A., Nano Lett. 9 (2), 711715 (2009).
18 Cook, B. A., Beaudry, B. J., Harringa, J. L. and Barnett, W. J., Proceedings of the International Energy Conversion Engineering Conference, 693, (1989).
19 Faleev, S. V. and Leonard, F., Phys. Rev. B. 77 (21), 9 (2008).
20 Vining, C. B., J. Appl. Phys. 69 (1), 331341 (1991).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed