Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T00:12:14.861Z Has data issue: false hasContentIssue false

Nanostructure of Porous Silicon Using Transmission Microscopy

Published online by Cambridge University Press:  09 August 2011

M. H. Nayfeh
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
Z. Yamani
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
O. Gurdal
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
A. Alaql
Affiliation:
Department of Physics, King Saud University, Riyadh, Saudi Arabia
Get access

Abstract

We use high resolution transmission electron microscopy (XTEM) to image the nanostructure of (100) p-type porous Si. A network of pore tracks subdivide the material into nanoislands and nanocrystallites are resolved through out the material. With distance from the substrate, electron diffraction develops, in addition to coherent diffraction, amorphous-like patterns that dominates the coherent scattering in the topmost luminescent layer. Also, with distance from the substrate, crystalline island size diminshes to as small as 1 nm in the topmost luminescence material. Although their uppermost layer has the most resolved nano crystallites, it has the strongest diffuse scattering of all regions. This suggests that the diffuse scattering is due to a size reduction effects rather than to an amorphous state. We discuss the relevance of a new dimer restructuring model in ultra small nanocrystallites to the loss of crystalline effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990)Google Scholar
[2] Cullis, A.G., Canham, L. T., and Calcott, P., J. Appl. Phys. 82, 909 (1997)Google Scholar
[3] Vasquez, R., Fathauer, R. W., George, T., and Ksendzov, A., Appl. Phys. Lett. 60, 1004 (1992)Google Scholar
[4] Perez, J., Villalobos, J., McNeill, P., Prasad, J., Cheek, R., Kelber, J., Estrera, J. P., Stevens, P. D. and Glosser, R.,Appl. Phys. Lett. 61, 563 (1992)Google Scholar
[5] Ambrazevicius, G., Zaicevas, G., Jasutis, V., and Gulbinaite, D. J. Appl. Phys. 76, 5442 (1994)Google Scholar
[6] Fathauer, R., George, T., Ksendzov, A., and Vasquez, R., Appl. Phys. Lett. 60, 995 (1992)Google Scholar
[7] Cullis, A., Canham, L., Williams, G. M., Smith, P., and Dosser, O.,J. Appl. Phys. 75, 493 (1994)Google Scholar
[8] Smith, R. L., and Collins, S. D., J. Appl. Phys. 71 (8), Rl (1992)Google Scholar
[9] Andsager, D., Hilliard, J., Hetrick, J., Abuhassan, L., Nayfeh, M., J. Appl. Phys. 74, 4783 (1993)Google Scholar
[10] Hilliard, J., Andsager, D., Abuhassan, L., Nayfeh, H., Nayfeh, M., J. Appl. Phy. 76, 2423 (1994)Google Scholar
[11] Gurdal, O., Desjardins, P., Carlsson, J. R. A., Taylor, N., Radamson, H. H., Sundgren, J. E., and Green, J. E., J. Appl. Phys. 83, 162 (1998)Google Scholar
[12] Thompson, W., Yamani, Z., Abuhassan, L., and Nayfeh, M., Appl. Phys. Lett.,73, 841 (1998)Google Scholar
[13] Allan, G., Delerue, C., and Lannoo, M., Phys. Rev. Lett. 76, 2961 (1996)Google Scholar
[14] Nayfeh, M., Rigakis, N., and Yamani, Z., Phys. Rev. B 56, 2079 (1997)Google Scholar
[15] Yamani, Z., Therrien, J., and Nayfeh, M.. (to be published).Google Scholar