Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T14:38:11.028Z Has data issue: false hasContentIssue false

Nanostructural Study of Luminescent Porous Polycrystalline Silicon

Published online by Cambridge University Press:  10 February 2011

M. C. Poon
Affiliation:
Department of Electrical & Electronic Engineering, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong
P. G. Han
Affiliation:
Department of Electrical & Electronic Engineering, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong
J. K. O. Sin
Affiliation:
Department of Electrical & Electronic Engineering, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong
H. Wong
Affiliation:
Department of Electronic Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
Get access

Abstract

Luminescent porous poly-Si films with large areas or micron-sized patterns have been obtained by anodization or stain etching of phosphorus-doped poly-Si films deposited by low pressure chemical vapor deposition onto Si, thermal oxide or CVD nitride. The anodized film is composed of spherical Si grains with nano-pores formed around the surface. However, the stainetched film has large rectangular Si grains, and no nano-pores can be observed. The intensity of photoluminescence is enhanced after nitric acid boiling or stain etching, and is found to be closely related to the crystallinity of the porous Si layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L.T., Appl. Phys. Lett. 57, 1406 (1990).Google Scholar
2. Guyader, P., Joubert, P., Guendouz, M., and Sarret, M., Appl. Phys. Lett. 65, 1787 (1994).Google Scholar
3. Kalkhoran, N.M., Namavar, F., and Maruska, H.P., Appl. Phys.Lett. 63, 2661 (1993).Google Scholar
4. Higa, K., Asano, T. and Miyssato, T., Jpn. J. Appl. Phys. 33, 1733 (1990).Google Scholar
5. Ueno, T., Akiba, Y., Shinohara, T., Koyama, H., Koshida, N. and Tarui, Y., Jpn. J. Appl. Phys. 32, L5 (1993).Google Scholar
6. Steckl, A.J., Xu, J. and Mogul, H.C., Appl. Phys. Lett. 62, 2111 (1993).Google Scholar
7. Kolic, Y., Gauthier, R., Perez, M.A. Garcia, Sibai, A., Dupuy, J.C., Pinard, P., Ghieth, R.M. and Maaref, H., Thin Solid Films. 255, 159 (1995).Google Scholar
8. Joubert, P., Abouliatim, A., Guyader, P., Briand, D., Lambert, B. and Guendouz, M., Thin Solid Films. 255, 96 (1995).Google Scholar
9. Jung, K.H., Shih, S., Kwong, D.L., Cho, C.C. and Gnade, B.E., Appl. Phys. Lett. 61, 2467 (1992).Google Scholar
10. Bustarret, E., Ligeon, M., Bruyere, J.C., Muller, F., Herino, R., Gaspard, F., Ortega, L. and Stutzmann, M., Appl Phys. Lett. 61, 1552 (1992).Google Scholar
11. Czaputa, R., Fritzl, R. and Popitsch, A., Thin Solid Films. 255, 212215, (1995).Google Scholar