Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-07T09:56:11.259Z Has data issue: false hasContentIssue false

Nanoscale Thermal Property of Amorphous SiC: A Molecular Dynamics Study

Published online by Cambridge University Press:  01 February 2011

Weiqiang Wang
Affiliation:
wangweiq@usc.edu, University of Southern California, Collaboratory for advanced computing and simulations, 3651 Watt. Way, 608, Los Angeles, CA, 90089, United States, 213 821-6301, 213 821-6301
Rajiv K. Kalia
Affiliation:
rkalia@usc.edu, University of Southern California, Collaboratory for Advanced Computing and Simulations, Los Angeles, CA, 90089, United States
Aiichiro Nakano
Affiliation:
anakano@usc.edu, University of Southern California, Collaboratory for Advanced Computing and Simulations, Los Angeles, CA, 90089, United States
Priya Vashishta
Affiliation:
priyav@usc.edu, University of Southern California, Collaboratory for Advanced Computing and Simulations, Los Angeles, CA, 90089, United States
Get access

Abstract

Thermal properties of amorphous silicon carbide (a-SiC) at nanometric scales are studied by molecular dynamics (MD) simulations based on an empirical interatomic potential. A scalable parallel MD algorithm is used for studying systems as long as 30nm. To validate the potential, phonon density of states and specific heat of a-SiC are first calculated. Size effects are studied, and errors are estimated for the temperature profile for different system sizes. Simulation time required to achieve steady temperature profiles is also determined. Finally the thermal conductivities of a-SiC at various temperatures are calculated. The results show that thermal conductivities of a-SiC at nanometric scale also agree with Slack's minimum thermal conductivity model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yamada, K. and Mohri, M., in Silicon Carbide Ceramics -1 edited by Somiya, S. and Inomata, Y. (Elsevier, London, 1991)Google Scholar
2. Schmid, U., Eickhoff, M., Richter, C., Krotz, G., Schmitt-Landsiedel, D., Sens. and Act. A 94 87 (2001)Google Scholar
3. Cahill, D. G., Ford, W.K., Goodson, K.E., et al, J. Appl. Phys. 93 793 (2003) and the reference thereinGoogle Scholar
4. Shimojo, F., Ebbsjo, I., Kalia, R.K., Nakano, A., Rino, J. P., and Vashishta, P., Phys. Rev. Lett. 84 3338 (2000)Google Scholar
5. Szlufarska, I., Kalia, R. K., Nakano, A. and Vashishta, P., App. Phys. Lett. 85 378 (2004)Google Scholar
6. Szlufarska, I., Kalia, R. K., Nakano, A. and Vashishta, P., App. Phys. Lett. 86 021915 (2005)Google Scholar
7. Szlufarska, I., Nakano, A., and Vashishta, P., Science 309 911 (2005)Google Scholar
8. Jund, P. and Jullien, R., Phys. Rev. B 59 13707 (1999)Google Scholar
9. Rino, J. P., Ebbsjo, I., Branicio, P. S., Kalia, R. K., Nakano, A., Shimojo, F. and Vashishta, P., Phys. Rev. B 70 045207 (2004)Google Scholar
10. Vashishta, P., Kalia, R. K., Nakano, A., Rino, J.P., J. Appl. Phys., in pressGoogle Scholar
11. Nakano, A., Vashishta, P., and Kalia, R. K., ibid, 77 302 (1993)Google Scholar
12. Schelling, P. K., Phillpot, S. R., and Keblinski, P., Phys. Rev. B 65 144306 (2002)Google Scholar
13. Maiti, A., Mahan, G. D., and Pantelides, S. T., Solid Stat. Comm. 102 517 (1997)Google Scholar
14. Cahill, D. G. and Pohl, R. O., Phys. Rev. B 35 4067 (1987)Google Scholar