Skip to main content Accessibility help
×
Home

Nanoscale Silicon Microcavity Optical Sensors for Biological Applications

  • Selena Chan (a1), Scott R. Horner (a2), Benjamin L. Miller (a2) and Philippe M. Fauchet (a3)

Abstract

The large surface area of porous silicon provides numerous sites for many potential species to attach, which makes it an ideal host for sensing applications. The average pore size can be easily adjusted to accommodate either small or large molecular species. When porous silicon is fabricated into a structure consisting of two high reflectivity multilayer mirrors separated by an active layer, a microcavity is formed. Multiple narrow and visible luminescence peaks are observed with a full width at half maximum value of 3 nm. The position of these peaks is extremely sensitive to small changes in refractive index, such as that obtained when a biological object is attached to the large internal surface of porous silicon. We demonstrate the usefulness of this microcavity resonator structure as a DNA optical biosensor which displays appropriate sensitivity, selectivity, and response speed. A probing strand of DNA is initially immobilized in the porous silicon matrix, and then subsequently exposed to its sensing complementary DNA strand. Red-shifts in the luminescence spectra are observed and detected for various DNA concentrations. The spectral shifts confirm successful recognition and binding of DNA molecules within the porous structure. Detailed device fabrication procedures and the results of extensive testing will be presented. The detection scheme has also been extended to include the detection of viral DNA, proteins, and potentially bacteria. This work will lead to the development of a “smart bandage”, where the detection of bacteria or viruses can be diagnosed and an antibiotic treatment can be recommended.

Copyright

References

Hide All
1. Canham, L. T., Appl. Phys. Lett., 57, 1046 (1990).
2. Berger, M. G., Thonissen, M., Arens-Fischer, R., Munder, H., Luth, H., Arntzen, M., and Theiβ, W., Thin Solid Films, 255, 313 (1995).
3. Berger, M. G., Dieker, C., Thonissen, M., Vescan, L., Luth, H., Munder, H., Wernke, M., and Grosse, P., J. Phys. D: Appl. Phys., 27, 1333 (1994).
4. Frohnhoff, S. and Berger, M. G., Adv. Mater., 6, 963 (1994).
5. Chan, S. and Fauchet, P. M., Appl. Phys. Lett., 75, 274 (1999).
6. Chan, S., Fauchet, P. M., Li, Y., and Rothberg, L. J., Proc. SPIE, 3912, 23 (2000).
7. Theβ, W., “Optical properties of porous silicon,” Surface Science Reports, 29, pp. 91192 (1997).
8. Lehninger, A. L., Nelson, D. L., and Cox, M. M., Principles of Biochemistry, Worth Publishers, New York, 1993.
9. Isola, N., Stokes, D. L., and Vo-Dinh, T., Anal. Chem., 70, 1352 (1998).
10. Janshoff, A., Dancil, K -P. S., Steinem, C., Greiner, D. P., Lin, V. S. -Y., Gurtner, C., Motesharei, K., Sailor, M. J., and Ghadiri, M. R., J. Am. Chem. Soc., 120, 12108 (1998).
11. Vo-Dinh, T., Alarie, J. P., Isola, N., Landis, D., Wintenberg, A. L., and Ericson, M. N., Anal. Chem., 71, 358 (1999).
12. Chan, S., Fauchet, P. M., Li, Y., Rothberg, L. J., and Miller, B. L., Phys. Stat. Sol. A, 182, 541 (2000).
13. Chan, S., Li, Y., Rothberg, L. J., Miller, B. L., and Fauchet, P. M., to be published in Physica E, (2001).
14. Hershey, A. D., The Bacteriophage Lambda The Cold Spring Harbor Laboratory, New York, USA (1971).
15. Lin, V. S. -Y., Motesharei, K., Dancil, K. -P. S., Sailor, M. J., and Ghadiri, M. R., Science, 278, 840 (1997).
16. Lehninger, A. L., Nelson, D. L., and Cox, M. M., Principles of Biochemistry 2nd Edition, Worth Publishers, New York (1993).
17. Hubbard, R. D., Horner, S. R., and Miller, B. L., to be published.

Nanoscale Silicon Microcavity Optical Sensors for Biological Applications

  • Selena Chan (a1), Scott R. Horner (a2), Benjamin L. Miller (a2) and Philippe M. Fauchet (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed