Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T07:53:07.641Z Has data issue: false hasContentIssue false

Nanoscale Pattern Transfer Using Sputter-Induced Corrugations Formed at the Si/SiO2 Interface

Published online by Cambridge University Press:  15 March 2011

Cary G. Allen
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY
Matthew Daniels
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY
Christopher C. Umbach*
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY
Jack M. Blakely
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY
*
cAuthor to whom correspondence should be addressed; umbach@ccmr.cornell.edu
Get access

Abstract

A conventional ion mill used for thinning transmission electron microscope samples has been used to produce nanoscale surface corrugations on the thermal oxide of Si. Using Ar ions with energies from 1.1 to 2.5 keV in an off-normal incidence geometry, the corrugations were produced with wavelengths from 30 to 80 nm and amplitudes of ~1 to 2 nm. The corrugated pattern in the oxide has been transferred to the underlying Si substrate by reactive ion etching, producing structures that have a much higher aspect ratio than the original corrugations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Present address: Dept. of Applied Physics, Mesa State College, Grand Junction, CO

b

Present address: Dept. of Physics, Pacific Lutheran University, Tacoma, WA

References

1. Navez, M., Sella, C., and Chaperot, D., Comptes Rendus J. de Phys. 254, 240 (1962).Google Scholar
2. Carter, G., Nobes, M. J., Paton, F., Williams, J. S. and Whitton, J. L., Rad. Eff. and Def. in Sol. 33, 65 (1977).Google Scholar
3. Cook, C. F., Helms, C. R. and Fox, D. C., J. Vac. Sci. Technol. 17, 44 (1980).Google Scholar
4. Chason, E., Mayer, T. M., Kellerman, B. K., McIlroy, D. T. and Howard, A. J., Phys. Rev. Lett. 72, 3040 (1994).Google Scholar
5. MacLaren, S. W., Baker, J. E., Finnegan, N. L. and Loxton, C. M., J. Vac. Sci. Technol. A 10, 468 (1992).Google Scholar
6. Rusponi, S., Boragno, C., and Valbusa, U., Phys. Rev. Lett. 78, 2795 (1997).Google Scholar
7. Rusponi, S., Costantini, G., Boragno, C. and Valbusa, U., Phys. Rev. Lett. 81, 4184 (1998).Google Scholar
8. Erlebacher, J., Aziz, M. J., Chason, E., Sinclair, M. B. and Floro, J. A., Phys. Rev. Lett. 84, 5800 (2000).Google Scholar
9. Sigmund, P., J. Mat. Sci. 8, 1545 (1973).Google Scholar
10. Bradley, R. M. and Harper, J. M. E., J. Vac. Sci. Technol. A 6, 2390 (1987).Google Scholar
11. Umbach, C. C., Headrick, R. L., and Chang, K.-C., Phys. Rev. Lett. 87, 246104 (2001).Google Scholar
12. Ziegler, J. F., Biersack, J. P., and Littmark, U., Stopping and range of ions in solids (Pergamon Press; New York, NY, USA, 1985).Google Scholar
13. Mayer, T. M., Chason, E., and Howard, A. J., J. Appl. Phys. 76, 1633 (1994).Google Scholar
14. Vajo, J. J., Doty, R. E., and Cirlin, E.-H., J. Vac. Sci. Technol. A 14, 2709 (1996).Google Scholar
15. Park, S., Kahng, B., Jeong, H. and Barabasi, A. L., Phys. Rev. Lett. 83, 3486 (1999).Google Scholar