Skip to main content Accessibility help

Nanoprobe Diffusion in Poly(Vinyl-alcohol) Gels and Solutions: Effects of pH and Dehydration

  • Hacène Boukari (a1), Candida Silva (a2), Ralph Nossal (a2) and Ferenc Horkay (a2)


We report fluorescence correlation spectroscopy (FCS) measurements of the translational diffusion of two fluorescent nanoprobes, rhodamine (R6G) and carboxytetramethylrhodamine (TAMRA), embedded in poly(vinyl alcohol) (PVA) solutions and gels. The diffusion coefficient was measured as a function of the PVA concentration and pH. Furthermore, we designed and built an optical chamber to determine the diffusion coefficient of the nanoprobes within the PVA solutions and gels subjected to controlled dehydration. We find that 1) lowering pH causes an apparent slowing down of the diffusion of the nanoprobes, 2) increase of PVA concentration and crosslink density also induce slowing down of both nanoprobes, and 3) dehydration induces systematic decrease of the diffusion of TAMRA in both solutions and gels. Taken together, these results demonstrate that transient physical interactions between the nanoprobes and the PVA linear polymers have a significant effect upon nanoprobe diffusion.



Hide All
[1] Hoffman, A.S., Advanced Drug Delivery Reviews 54, 3 (2002).
[2] Cascone, M. G., Lazzeri, L., Sparvoli, E., Scatena, M., Serino, L.P., and Danti, S. Journal of Materials Science- Materials in Medicine 15, 1309 (2004).
[3] Peppas, N.A. and Kim, B. Journal of Drug Delivery Science and Technology 2006, 16, 11 (2006).
[4] Nuttelman, C. R., Henry, S. M., Anseth, K. S., Biomaterials 23, 3617 (2002).
[5] Schmedlen, R. H., Masters, K. S., West, J. L., Biomaterials 23, 4325 (2002).
[6] Michelman-Ribeiro, A., Boukari, H., Nossal, R., Horkay, F. Macromolecules 2004, 37, 10212.
[7] Michelman-Ribeiro, A., Horkay, F., Nossal, R., and Boukari, H., Biomacrolecules 8, 1595 (2007).
[8] Langevin, D. and Rondelez, F. Polymer 1978, 19, 1875.
[9] De Gennes, P-G. Scaling Concepts in Polymer Physics; Cornell University Press; Ithaca, NY, 1979.
[10] Doi, M, Edwards, S. F. The Theory of Polymer Dynamics (Clarendon; Oxford, U.K., 1986.)
[11] Horkay, F., Hecht, A-M, Mallam, S., Geissler, E., and Rennie, A. R., Macromolecules 24, 2896 (1991).
[12] Horkay, F., Hecht, A-M., Geissler, E. Macromolecules 1994, 27, 1795.
[13] Boukari, H., Silva, C., Nossal, R., and Horkay, F., Bioinspired Polymer Gels and Networks, edited by Horkay, F., Langrana, N.A., Ryan, A.J., and Londono, J.D. (Mater. Res. Soc. Symp. Proc. 1060E, Warrendale, PA, 2008), 1060-LL07-03.
[15] Boukari, H., Nossal, R., and Sackett, D. L., Biochemistry 42, 1292 (2003).
[16] Webb, W. W. Appl. Opt. 2001, 40, 3969.
[17] Aragon, S. R. and Pecora, R. J. Chem. Phys. 1976, 64, 1791.
[18] Krichevsky, O. and Bonnet, G. Reports on Progress in Physics 2002, 65, 251.
[19] Chen, Y., Müller, J. D., Berland, K. M., Gratton, E., Methods 19, 234 (1999).
[20] Digman, M. A. and Gratton, E., Annu Rev Phys Chem. 62, 645668 (2011).
[21] Zustiak, S. P., Boukari, H., and Leach, J. B., Soft Matter 6 36093618 (2010).
[22] Zustiak, S. P., Riley, J., Boukari, H., Gandjbakhche, H. A., Nossal, R., Journal of Biomedical Optics 17(12), 125004–125004 (2012).
[23] Lee, J., Masato, S., Kiminori, U. and Mochida, J., BMC Biotechnology. 11(1), 19 (2011).
[24] Zustiak, S. P., Nossal, R. and Sackett, D. L., Biophys J. 101(1), 255264 (2011).
[25] Stylianopoulos, T., Poh, M. Z., Insin, N., Bawendi, M. G., Fukumura, D., Munn, L. L. and Jain, R. K., Biophys J. 99(5), 13421349 (2010).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed