Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-22T19:15:45.434Z Has data issue: false hasContentIssue false

Nanomaterials: Tin(IV) Sulfide Endo-and Exosemiconductors

Published online by Cambridge University Press:  25 February 2011

Carol L. Bowes
Affiliation:
Advanced Zeolite Materials Science Group, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario, M5S 1A1, Canada
Geoffrey A. Ozin
Affiliation:
Advanced Zeolite Materials Science Group, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario, M5S 1A1, Canada
Get access

Abstract

Endosemiconductors, materials produced when atom constituents of bulk semiconductors are reorganized into ordered arrays of single size and shape clusters encapsulated within a nanoporous host, are introduced with the report of a novel tin(IV) sulfide endosemiconductor synthesized by a two-step MOCVD-like self-assembly process. Template-mediated hydrothermal syntheses of phase-pure and large single crystal tin(IV) sulfide exosemiconductors, materials resulting from reorganization of those same atomic constituents into an open-framework crystalline nanoporous structure is also discussed. The properties of these nanomaterials are considered in terms of the degree of coupling between molecule-like constituent clusters, a concept which mediates the nanoworld of matter intermediate between molecular and bulk.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ozin, G.A., Adv. Chem. Ser. ACS, Washington, D.C. (in press); G.A. Ozin, Adv. Mater., 4, 612, (1992).Google Scholar
2. Muller, A., Nolte, W., Cyvin, S.J., Cyvin, B.N., and Alix, A.J.P., Spectrochim. Acta, 32A, 67, (1976).Google Scholar
3. Bedard, R.L., Vail, L.D., Wilson, S.T., Flanigen, E.M., U.S. Patent No. 4,880,761 (14 Nov. 1989).Google Scholar
4. Nitsche, R., J. Phys. Chem. Solids, 17, 163, (1960);R. Nitsche, H.U. Bolsterli, M. Lichtensteiger, J. Phys. Chem. Solids, 21, 199, (1961); H.P.B. Rimmington, A.A. Balchin, B.K. Tanner, J. Crystal Growth, 15, 51, (1972).Google Scholar
5. Breck, D.W., Zeolite Molecular Sieves, (Wiley-Interscience, New York, 1974), p. 93.Google Scholar
6. Stringfellow, G.B., Organometallic Vapour-Phas Epitaxy, (Academic Press, Inc., San Diego, CA, 1989).Google Scholar
7. Jacobs, P.A., Uytterhoeven, J.B., J. Chem. Soc., Faraday Trans. I, 69, 359, (1973); D.H. Olsen, E. Dempsey, J. Catalysis, 13, 221, (1969); J.W. Ward, in Zeolite Chemistry and Catalysis. ACS Monograph 171, edited by J.A. Rabo, (American Chemical Society, Washington, 1976), p 118.Google Scholar
8. Ozin, G.A., Bowes, C.L., Steele, M.R. in Macromolecular Host-Guest Complexes: Optical.Optoelectronic. and Photorefractive Properties and Applications, edited by Jenekhe, S.A., (Mater. Res. Soc. Proc. 277, Pittsburgh, PA, 1992) pp. 105112; G.A. Ozin, S. Ozkar, Chem. Mater. 4, 511, (1992).Google Scholar
9. Stucky, G.D., MacDougall, J.E., Science, 247, 669, (1990).Google Scholar
10. ICONCL, OS/2-Version, MS-Fortran 5.0, 30 Nov. 1989, Modified ICON8 from QCPE 344, Calzaferri Group, Institute for Inorganic Chemistry, U. of Bern, Switzerland; J.H. Ammeter, H.-B. Burgi, J.C. Thibeault, R. Hoffman, J. Am. Chem. Soc., 100, 3686, (1978); G. Calzaferri, L Forss, I. Kamber, J. Phys. Chem., 93, 5366, (1989).Google Scholar
11. Schlüter, I.Ch. and Schllter, M., phys. stat. sol. (b), 57, 145 (1973).Google Scholar
12. Jaros, M., Physics and Applications of Semiconductor Microstructures, (Clarendon Press, Oxford, 1989), pp 9396.Google Scholar
13. Bowes, C.L., Ozin, G.A., Bedard, R.L., and Young, D., manuscripts in preparation.Google Scholar