Skip to main content Accessibility help
×
Home

Nanolithography Developed Through Electron Beam Induced Surface Reaction

  • S. Matsui (a1), Y. Ochiai (a1), M. Baba (a1), J. Fujita (a1), H. Watanabe (a1), S. Manako (a1), Y. Ohnishi (a1), K. Ogai (a2), Y. Kimura (a2) and R. Shimizu (a2)...

Abstract

Nanolithography has been studied by using electron beam technology. Ten-nm linewidth PMMA resist patterns have been demonstrated by 50 kV scanning electron beam. The self-developing properties of a AlF3 doped LiF inorganic resist under a scanning electron beam irradiation with energy of 20–50 keV have been studied for sub-10 nm lithography. By optimizing the inorganic resist film quality, 5 nm linewidth patterns with 60 nm periodicity were directly delineated under a 30 keV electron beam. Another approach for nanolithography using electron beam holography has been proposed. Line and dot patterns with 100 nm periodicity were exposed on PMMA resist by electron beam holography with thermal field emitter gun and an electron biprism. Subsequent atomic force microscope observation has confirmed that both patterns are successfully fabricated. This technique allows us to produce nanoscale periodic patterns simultaneously. The selective atomic desorption of Cl atoms adsorbed on a Si (111) 7×7 surface has been studied by field evaporation using a scanning tunneling microscope (STM). The STM tip is placed on the adsorbed Cl on the surface, and pulse voltage was applied. This results in selective atomic desorption of Cl.

Copyright

References

Hide All
1. Emoto, F., Gamo, K., Namba, S., Samoto, N., and Shimizu, R., Jpn. J. Appl. Phys. 24, L809 (1985).
2. Nishida, T. and Tamamura, T., Proceedings of 1992 Spring Meeting of Japanese Applied Physcs Meeting, p. 492 (in Japanese).
3. Yoshimura, T., Nakayama, Y., and Okazaki, S., J. Vac. Sci. Technol. B10, 2615 (1992).
4. Fujita, J. et al., to be submitted to J. Vac. Sci. Technol..
5. Isaacson, M. and Murray, A., J. Vac. Sci. Technol., B9, 1117 (1981).
6. Allee, D. R. and Broers, A. N., Appl.Phys. Lett. 57, 2271 (1990).
7. Fujita, J., Watanabe, H., Ochiai, Y., Manako, S., Tsai, J. S., and Matsui, S., Appl. Phys. Lett., 66, 3065 (1995).
8. Broers, A. N. and Molzen, W. W., Cuomo, J. J., and Wittles, N. D., Appl. Phys. Lett. 29, 596 (1976).
9. Kubena, R. L., Ward, J. W., Stratton, F. P., Joyce, R. J., and Atkinson, G. M., J. Vac. Sci. Technol. B9, 3079 (1991).
10. Ochiai, Y., Baba, M., Watanabe, H., and Matsui, S., Jpn. J. Appl. Phys. 30,3266 (1991).
11. Ochiai, Y., Watanabe, H., Fujita, J., Baba, M., Manako, S., and Matsui, S., Jpn. J. Appl. Phys. 32, 6147 (1993).
12. Murry, A., Scheinfein, M., Isaacson, M., and Adesida, I., J. Vac. Sci. Technol. B3, 367 (1985).
13. Kratschmer, E. and Isaacson, M., J. Vac. Sci. Technol. B5, 369 (1987).
14. Langheinrich, W., Vescan, A., Spangenberg, B., and Beneking, H., Microelectronics Engineering 17, 287 (1992).
15. Langheinrich, W. and Beneking, H., Jpn. J. Appl. Phys. 32, 6248 (1993).
16. Ogai, K., Matsui, S., Kimura, Y., and Shimizu, R., Jpn. J. Appl. Phys. 32, 5988 (1993).
17. K. 0gi, Matsui, S., Kimura, Y., and Shimizu, R., Appl. Phys. Lett. 66, 1560 (1995).
18. Lyo, I. W. and Avouris, P., Science 253, 173 (1991).
19. Villarrubia, J. S. and Boland, J. J., Phys. Rev. Lett. 63, 306 (1989); Science 248, 838 (1990); Phys. Rev. B41, 9865 (1990).
20. Baba, M. and Matsui, S., Appl. Phys. Lett. 64, 2852 (1994); J. Vac. Sci. Technol. B12, 3716 (1994); Appl. Phys. Lett. 65, 1927 (1994).

Nanolithography Developed Through Electron Beam Induced Surface Reaction

  • S. Matsui (a1), Y. Ochiai (a1), M. Baba (a1), J. Fujita (a1), H. Watanabe (a1), S. Manako (a1), Y. Ohnishi (a1), K. Ogai (a2), Y. Kimura (a2) and R. Shimizu (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed