Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T11:41:54.318Z Has data issue: false hasContentIssue false

Nanolithography Developed Through Electron Beam Induced Surface Reaction

Published online by Cambridge University Press:  15 February 2011

S. Matsui
Affiliation:
Fundamental Research Laboratories, NEC Corporation, Tsukuba, 305 Japan
Y. Ochiai
Affiliation:
Fundamental Research Laboratories, NEC Corporation, Tsukuba, 305 Japan
M. Baba
Affiliation:
Fundamental Research Laboratories, NEC Corporation, Tsukuba, 305 Japan
J. Fujita
Affiliation:
Fundamental Research Laboratories, NEC Corporation, Tsukuba, 305 Japan
H. Watanabe
Affiliation:
Fundamental Research Laboratories, NEC Corporation, Tsukuba, 305 Japan
S. Manako
Affiliation:
Fundamental Research Laboratories, NEC Corporation, Tsukuba, 305 Japan
Y. Ohnishi
Affiliation:
Fundamental Research Laboratories, NEC Corporation, Tsukuba, 305 Japan
K. Ogai
Affiliation:
Department of Applied Physics, Osaka University, Suita, Osaka, 565 Japan
Y. Kimura
Affiliation:
Department of Applied Physics, Osaka University, Suita, Osaka, 565 Japan
R. Shimizu
Affiliation:
Department of Applied Physics, Osaka University, Suita, Osaka, 565 Japan
Get access

Abstract

Nanolithography has been studied by using electron beam technology. Ten-nm linewidth PMMA resist patterns have been demonstrated by 50 kV scanning electron beam. The self-developing properties of a AlF3 doped LiF inorganic resist under a scanning electron beam irradiation with energy of 20–50 keV have been studied for sub-10 nm lithography. By optimizing the inorganic resist film quality, 5 nm linewidth patterns with 60 nm periodicity were directly delineated under a 30 keV electron beam. Another approach for nanolithography using electron beam holography has been proposed. Line and dot patterns with 100 nm periodicity were exposed on PMMA resist by electron beam holography with thermal field emitter gun and an electron biprism. Subsequent atomic force microscope observation has confirmed that both patterns are successfully fabricated. This technique allows us to produce nanoscale periodic patterns simultaneously. The selective atomic desorption of Cl atoms adsorbed on a Si (111) 7×7 surface has been studied by field evaporation using a scanning tunneling microscope (STM). The STM tip is placed on the adsorbed Cl on the surface, and pulse voltage was applied. This results in selective atomic desorption of Cl.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Emoto, F., Gamo, K., Namba, S., Samoto, N., and Shimizu, R., Jpn. J. Appl. Phys. 24, L809 (1985).Google Scholar
2. Nishida, T. and Tamamura, T., Proceedings of 1992 Spring Meeting of Japanese Applied Physcs Meeting, p. 492 (in Japanese).Google Scholar
3. Yoshimura, T., Nakayama, Y., and Okazaki, S., J. Vac. Sci. Technol. B10, 2615 (1992).Google Scholar
4. Fujita, J. et al., to be submitted to J. Vac. Sci. Technol..Google Scholar
5. Isaacson, M. and Murray, A., J. Vac. Sci. Technol., B9, 1117 (1981).Google Scholar
6. Allee, D. R. and Broers, A. N., Appl.Phys. Lett. 57, 2271 (1990).Google Scholar
7. Fujita, J., Watanabe, H., Ochiai, Y., Manako, S., Tsai, J. S., and Matsui, S., Appl. Phys. Lett., 66, 3065 (1995).Google Scholar
8. Broers, A. N. and Molzen, W. W., Cuomo, J. J., and Wittles, N. D., Appl. Phys. Lett. 29, 596 (1976).Google Scholar
9. Kubena, R. L., Ward, J. W., Stratton, F. P., Joyce, R. J., and Atkinson, G. M., J. Vac. Sci. Technol. B9, 3079 (1991).Google Scholar
10. Ochiai, Y., Baba, M., Watanabe, H., and Matsui, S., Jpn. J. Appl. Phys. 30,3266 (1991).Google Scholar
11. Ochiai, Y., Watanabe, H., Fujita, J., Baba, M., Manako, S., and Matsui, S., Jpn. J. Appl. Phys. 32, 6147 (1993).Google Scholar
12. Murry, A., Scheinfein, M., Isaacson, M., and Adesida, I., J. Vac. Sci. Technol. B3, 367 (1985).Google Scholar
13. Kratschmer, E. and Isaacson, M., J. Vac. Sci. Technol. B5, 369 (1987).Google Scholar
14. Langheinrich, W., Vescan, A., Spangenberg, B., and Beneking, H., Microelectronics Engineering 17, 287 (1992).Google Scholar
15. Langheinrich, W. and Beneking, H., Jpn. J. Appl. Phys. 32, 6248 (1993).Google Scholar
16. Ogai, K., Matsui, S., Kimura, Y., and Shimizu, R., Jpn. J. Appl. Phys. 32, 5988 (1993).Google Scholar
17. K. 0gi, Matsui, S., Kimura, Y., and Shimizu, R., Appl. Phys. Lett. 66, 1560 (1995).Google Scholar
18. Lyo, I. W. and Avouris, P., Science 253, 173 (1991).Google Scholar
19. Villarrubia, J. S. and Boland, J. J., Phys. Rev. Lett. 63, 306 (1989); Science 248, 838 (1990); Phys. Rev. B41, 9865 (1990).Google Scholar
20. Baba, M. and Matsui, S., Appl. Phys. Lett. 64, 2852 (1994); J. Vac. Sci. Technol. B12, 3716 (1994); Appl. Phys. Lett. 65, 1927 (1994).Google Scholar