Skip to main content Accessibility help
×
Home

Nanocomposite of Bi2Te3 with Metal Inclusions for Advanced Thermoelectric Applications

  • Sumithra Santhanam (a1), Nathan J. Takas (a2), Dinesh Misra (a3), Pierre F. P. Poudeu (a4) and Kevin L. Stokes (a5)...

Abstract

Recent experimental and theoretical studies have shown that the thermal to electrical power conversion efficiency (as measured by the thermoelectric figure of merit) can be enhanced in nanocomposite materials. Primarily, these efforts to improve the thermoelectric efficiency rely on reducing the lattice thermal conductivity through nanostructuring of the materials or the introduction of a second nanometer-scale phase into the composite material. Here, we show that the inclusion of semimetal nanoparticles into bismuth telluride (Bi2Te3) can result in both an increase in the electronic transport properties (so called "power factor") as well as a decrease in lattice thermal conductivity. The effect of different volume fractions of Bi nanoinclusions (3% and 5%) on the thermal and electrical properties of the composite are reported. A marginal increase in the thermoelectric figure of merit is achieved for 3% metal nanoinclusion, whereas a significant improvement in the figure of merit could be achieved for 5% nanoinclusions in the Bi2Te3 thermoelectric matrix.

Copyright

References

Hide All
1 Goldsmid, H. J. Electronic Refrigeration (Pion Ltd., London, 1986).
2 Poudel, B. Hao, Q. Ma, Y. Lan, Y. Minnich, A. Yu, B. Yan, X. Wang, D. Muto, A. Vashaee, D., Chen, X. Liu, J. Dresselhaus, M. S. Chen, G. and Ren, Z. Science 320, 634 (2008).
3 Faleev, S. V. and Leonard, F. Phys. Rev. B 77, 214304 (2008).
4 Heremans, J. P. Thrush, C. M. and Morelli, D. T. J. Appl. Phys. 98, 063703 (2005).
5 Zebarjadi, M. Esfarjani, K. Shakouri, A. Bahk, J.-H. Bian, Z. Zeng, G. Bowers, J. Lu, H. Zide, J. and Gossard, A. Appl. Phys. Lett. 94, 202105 (2009).
6 Zebarjadi, M. Esfarjani, K. Shakouri, A. Bian, Z. Bahk, J.-H. Zeng, G. Bowers, J. Lu, H. Zide, J. and Gossard, A. J. Electron. Mater. 38, 954 (2009).
7 Kim, W. and Majumdar, A. J. Appl. Phys. 99, 084306 (2006).
8 Kim, W. Zide, J. Gossard, A. Klenov, D. Stemmer, S. Shakouri, A. and Majumdar, A. Phys Rev Lett 96, 045901 (2006).
9 Misra, D. M. Sumithra, S. Poudeu, P. F. P. Stokes, K. L. and Gabrisch, H. in Energy Harvesting - From Fundamentals to Devices, Mater. Res. Soc. Proc., edited by Radouski, H., Holbery, J. D. Lewis, L. H. and Schmidt, F. (MRS, Warrendale, PA, 2009), Vol. 1218E, p. 668359.
10 Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, New York, USA, 2001).
11 Scherrer, H. and Scherrer, S. in Thermoelectrics Handbook: Macro to Nano, edited by Rowe, D. M. (CRC Press, Boca Raton, FL, USA, 2006), p. 27.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed