Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T19:52:57.517Z Has data issue: false hasContentIssue false

Nanocomposite Material for Sensing of Halogenated Methanes: A Model Based on Charge Transfer Interaction for Selectivity

Published online by Cambridge University Press:  01 February 2011

Rajiv Sangoi
Affiliation:
Center for Materials Science and Engineering
L. Fuller
Affiliation:
Microelectronic Engineering
K. S. V. Santhanam
Affiliation:
Center for Materials Science and Engineering Department of Chemistry, Rochester Institute of Technology, Rochester, NY, 14623
Get access

Abstract

A unique nanocomposite of poly (3-methylthiophene) with functionalized multiwalled carbon nanotubes (MWNT) has been synthesized that shows selective sensing for halogenated methanes. The sensor has been found to give the highest response for chloroform and none for methane. A tentative model has been proposed for this selective sensing of halogenated methanes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krishna, C., Chem. Senses, 495505 (1996).Google Scholar
2. Gallazzi, M.C., Tassoni, L., Bertarelli, C., Pioggia, G., Di Francesco, F., Montoneri, E., Sensors and Actuators B 88, 178189. (2003)Google Scholar
3. Bartlett, P. N. and Ling-Chung, S. K., Sensors and Actuators 20, 287292. (1989)Google Scholar
4. MacDiarmid, A.G, Epstein, A.J, Faraday Discuss. Chem. Soc., 88, 317322. (1989)Google Scholar
5. MacDiarmid, A.G, Synthetic Metals 84, 2734. (1997)Google Scholar
6. Kreja, L., Kurzawa, J., Kurzawa, M., Sensors and Actuators B 41, 3743 (1997)Google Scholar
7. Sakurai, Y., Jung, Ho-Sup, Shimanouchi, T., Inoguchi, T., Morita, S., Kuboi, R., Natsukawa, K., Sensors and Actuators B 83, 270275 (2002)Google Scholar
8. Kawde, R.B, Laxmeshwar, N.B. and Santhanam, K.S.V., Sensors & Actuators B 23, 35 (1995)Google Scholar
9. Blanc, J. P., Derouiche, N., El Hadri, A., Germain, J. P., Maleysson, C. and Robert, H., Sensors and Actuators B 1, 130133 (1990)Google Scholar
10. Ijima, S., Nature, 354, 56 (1991)Google Scholar
11. Kong, J., Franklin, N.R, Zhou, C., Chapline, M.G, Peng, S., Cho, K., Dai, H., Science, 287, 622. (2000)Google Scholar
12. Varghese, O.K, Kichambre, P.D, Gong, D., Ong, K.G, Dickey, E.C., Grimes, C.A., Sensors and Actuators B 81, 3241. (2001)Google Scholar
13. Dai, L., Soundarrajan, P., Kim, T., Pure Appl. Chem 74, No. 9, 17531772. (2002)Google Scholar
14. Sharma, S., Nirkhe, C., Pethkar, S., Athawale, A., Sensors and Actuators B 85, 131136. (2002)Google Scholar
15. Croston, M., Langston, J., Sangoi, R., Santhanam, K.S.V., Int. J.Nanoscience, 1, 277283. (2002)Google Scholar
16. Croston, M., Langston, J., Takacs, G., Morrill, T.C., Miri, M., Santhanam, K.S.V. and Aayan, P., Int. J. Nanoscience, 1, 285, 2002.Google Scholar
17. NIST Chemistry Web book, http://webbook.nist.gov/chemistry/; Hand book of Chemistry, 57th Edition, CRC Press, Boca Raton, Fl, 19901991.Google Scholar
18. Janssen, R.A., Sariciftci, N.S. and Heeger, A.J., J. Chem. Phys., 100, 8641. (1994)Google Scholar
19. Barbec, C.J., Dyakonov, V., Sariciftci, N.S., Graupner, W., Leising, G. and Hummelen, J.C., J. Chem. Phys., 109, 1185. (1998)Google Scholar
20. Zhao, J., Baldum, A., Han, J. and Lu, J.P., Nanotechnology, 13, 195 (2002)Google Scholar