Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-30T21:52:15.983Z Has data issue: false hasContentIssue false

Nanocharacterization of Texture and Hillock Formation in Thin Al And Al-0.2%Cu Films for Thin-Film Transistors

Published online by Cambridge University Press:  10 February 2011

H. Takatsuji
Affiliation:
IBM Japan Ltd., Display Technology, Yasu-cho, Yasu-gun, Shiga 520-23, Japan
S. Tsuji
Affiliation:
IBM Japan Ltd., Display Technology, Yamato-shi, Kanagawa 242, Japan
H. Kitahara
Affiliation:
IBM Japan Ltd., Display Technology, Yasu-cho, Yasu-gun, Shiga 520-23, Japan
K. Tsujimoto
Affiliation:
ITES Co., Yasu-cho, Yasu-gun, Shiga 520-23, Japan
K. Kuroda
Affiliation:
Department of Quantum Engineering, Nagoya University, Nagoya 464-01, Japan
H Saka
Affiliation:
Department of Quantum Engineering, Nagoya University, Nagoya 464-01, Japan
Get access

Abstract

The relation between the nanostructure of pure Al and Al-0.2 wt.% Cu thin films on glass substrates and anti-stress migration properties were investigated. These films were deposited on liquid-crystal display (LCD) grade glass substrate (550 x 650 mm) by means of two types of dc magnetron multi-chamber sputtering apparatus.

We developed the nanoindentation techniques to accelerate the characterization time for stress migration test. By AFM and cross-sectional TEM observations, we found an unusual three-layer structure in a Al-Cu thin film with strong anti-stress migration property.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schnable, G. L. and Keen, R. S.: Proc. IEEE, Vol.57, No.9, Sep., p. 1570, 1969 Google Scholar
2. Murakami, M., CRC Crit. Rev. Solid State Mater. Science 11, 317 (1984)Google Scholar
3. Doerner, M. F., and Nix, W. D., CRC Crit. Rev. Solid State Mater. Science 14, 225 (1988)Google Scholar
4. Gardner, D. S., and Flinn, P. A., Mater. Res. Soc. Proc. 130, 69 (1989)Google Scholar
5. d'Heurle, F. M., Int. Mater. Rev. 34, 53 (1989)Google Scholar
6. Smith, U., Kristensen, N., Ericson, F., and Schweitz, J., J. Vac. Sci. Technol. A9, 2527 (1991).Google Scholar
7. Ames, I., d'Heurle, F. M., and Horstmann, R. E., IBM J. Res. Develop. 14, 461 (1970).Google Scholar
8. Tsuji, S., Takatsuji, H., Tsujimoto, K., Miura, N., Kuroda, K. and Saka, H., in Proc. The 43rd National Symposium of the AVS, 1996, TF-MoP8, pp. 5354 Google Scholar
9. Takatsuji, H., Tsuji, S., Tsujimoto, K., Miura, N., Kuroda, K. and Saka, H., in Proc. The 43rd National Symposium of the AVS, 1996, TF-MoP7, pp. 53 Google Scholar
10. Harper, J.M.E., Clevenger, L.A., Colgan, E.G., Cabral, C. Jr. and Arcot, B., Mat. Res. Soc. Symp. Proc. Vol.318, 1994, pp. 307318.Google Scholar
11. Frear, D. R., Michael, J. R. and Roming, A. D. jr., Mat. Res. Soc. Symp. Proc. Vol.309, 1993, pp. 359367 Google Scholar
12. Greene, Joseph E., Handbook of Deposition Technologies for Films and Coatings, edited by Bunshah, Rointan F., Noyes Publications, (1994), pp. 681739.Google Scholar