Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T09:05:01.711Z Has data issue: false hasContentIssue false

Nanobumps in InxAl1-xN/AlN/Sapphire System:A New Kind of Quantum Dots?

Published online by Cambridge University Press:  21 March 2011

Yuri Danylyuk
Affiliation:
Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, U.S.A.
Dmitri Romanov
Affiliation:
Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, U.S.A.
Gregory Auner
Affiliation:
Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, U.S.A.
Get access

Abstract

We have investigated InxAl1-xN layers grown by plasma source molecular beam epitaxy (PSMBE) on c-plane sapphire (0001) substrates with thin (about 100 Å) buffer layers of AlN. The value of x varied from 0 to 1. For all these layers, high resolution X-ray diffraction scans (XRD) show no indication of face segregation, while the atomic force microscope (AFM) images of the structures demonstrate a large number of nanobumps. Our spectroscopic measurements (UV/VIS optical absorption and reflection spectroscopy) of these bumpy structures indicate additional peaks that can be only associated with additional energy levels. We ascribe these levels to electrons, which are confined and quantized near the nanobump tips by strong piezoelectric field caused mainly by biaxial strain of the AlN layer. The calculated energies of these quantized states are in a good agreement with the spectroscopic data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tachibana, K., Someya, T., Arakawa, Y., Werner, R., and Forchel, A., Appl. Phys. Lett. 75, 2605(1999)Google Scholar
2. Arakawa, Y., Someya, T., and Tachibana, K., Phys. Stat. Sol. (b) 224, 1 (2001).Google Scholar
3. Yamaguchi, S., Kariya, M., Nitta, S., Takeuchi, T., Wetzel, C., Amano, H., Akasaki, I., Appl. Phys. Lett. 76, 876 (2000) and references therein.Google Scholar
4. Peng, T., Piprek, J., Qui, G., Olowoiafe, J.O., Unruh, K.M., Swann, C.P., Shubert, E. F., Appl. Phys. Lett. 71, 2439 (1997).Google Scholar
5. Kim, K.S., Saxler, A., Kung, P., Razaghi, M., Lim, K.Y., Appl.Phys. Lett. 71 (1997) 800.Google Scholar
6. Kubota, K., Kobayashi, Y., Fujimoto, K., J. Appl. Phys. 66 2984 (1989).Google Scholar
7. Guo, O., Ogawa, H. and Yoshida, A., J. Cryst. Growth 146, 462 (1995).Google Scholar
8. Jain, S. C., Willander, M., Narayan, J., and Overstraeten, R. Van, J. Appl Phys. 87, 965 (2000).Google Scholar
9. Fiorentini, V., Bernardini, F., and Vanderbilt, D., Phys. Rev. B 56, R10 (1997); V. Fiorentini, F. Bernardini, and D. Vanderbilt, Phys. Rev. Lett. 79, 3958 (1997).Google Scholar
10. Bykhovski, B. Gelmont, and Shur, M., J. Appl. Phys., 74, 6734 (1993).Google Scholar
11. Li, Y.-X., Salamanca-Riba, L., Wongchotingul, K., Zhou, P., Spence, M.G., and Jones, V.K., Mat. Res. Soc. Symp. Proc. Vol. 482, p. 137 (1998).Google Scholar
12. Lukitch, M.J. < Danylyuk, Y.V., Naik, V.M., Huang, C., Auner, G.W., Rimai, L., and Naik, R., Appl. Phys. Lett., 79, 632 (2001).Google Scholar