Skip to main content Accessibility help
×
Home

Multiscale Modeling of a Quantum Dot Heterostructure

  • P. Sengupta (a1), S. Lee (a1), S. Steiger (a1), H. Ryu (a1) and G. Klimeck (a1)...

Abstract

A multiscale approach was adopted for the calculation of confined states in self-assembled semiconductor quantum dots (QDs). While results close to experimental data have been obtained with a combination of atomistic strain and tight-binding (TB) electronic structure description for the confined quantum states in the QD, the TB calculation requires substantial computational resources. To alleviate this problem an integrated approach was adopted to compute the energy states from a continuum 8-band k.p Hamiltonian under the influence of an atomistic strain field. Such multiscale simulations yield a roughly six-fold faster simulation. Atomic-resolution strain is added to the k.p Hamiltonian through interpolation onto a coarser continuum grid. Sufficient numerical accuracy is obtained by the multiscale approach. Optical transition wavelengths are within 7% of the corresponding TB results with a proper splitting of p-type sub-bands. The systematically lower emission wavelengths in k.p are attributable to an underestimation of the coupling between the conduction and valence bands.

Copyright

References

Hide All
[1] Grundmann, M., Stier, O. and Bimberg, D., Phys. Rev. B 52, 11969, (1995)
[2] Fu, H., Wang, L. and Zunger, A., Phys. Rev. B 57, 9971, (1998)
[3] Musgrave, M. and Pople, J., Proc. R. Soc. Lond. A7 Vol. 268, no. 1335, 474, (1962)
[4] Slater, J.C. and Koster, G.F., Phys. Rev. 94, 1498, (1954)
[5] Harrison, W., Electronic Structure and Properties of Solids, Dover Publications, (1989)
[6] Luttinger, J. M. and Kohn, W., Phys. Rev. 97, 869, (1955)
[7] Kane, E. O., J. Phys. Chem. Sol. 1, 249, (1957)
[8] Bahder, T., Phys. Rev. B 41, 11992, (1990)
[9] Keating, P., Phys. Rev. 145, 637, (1966)
[10] Usman, M. et al. .: IEEE Trans. on Nanotechnology 8, 330 (2009)
[11] Tateyabashi, J., Nishioka, M. and Arakawa, Y., Appl. Phys. Lett. 78, 3469 (2001)
[12] Chuang, S., Physics of Photonic Devices, Wiley, 2nd ed. (2009)
[13] Boykin, T. et al. .: Phys. Rev. B 69, 115201, (2004)
[14] Veprek, R.G., Steiger, S. and Witzigmann, B., Phys. Rev. B 76, 165320, (2007)
[15] Stillinger, F., Weber, T., Phys. Rev. B 31, 5262 (1985)
[16] Tersoff, J., Phys. Rev. B 37, 6991 (1988)
[17] Bernard, J.E. and Zunger, A., Phys. Rev. B 44, 1663 (1991)
[18] Davies, J., J. Appl. Phys. 84, 1358, (1998)
[19] Lee, S. et al. ., IEEE proceedings of the 13th International Workshop on Computational Electronics, doi:10.1109/IWCE.2009.5091117 (2009).
[20] Kittel, C., Introduction to Solid State Physics, 8th ed. (2005)
[21] Luisier, M. et al. ., Phys. Rev B 74, 205323 (2006)
[22] Lazarenkova, O. et al. ., Appl. Phys. Lett. 85, 4193 (2004)

Keywords

Multiscale Modeling of a Quantum Dot Heterostructure

  • P. Sengupta (a1), S. Lee (a1), S. Steiger (a1), H. Ryu (a1) and G. Klimeck (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed