Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T14:06:15.847Z Has data issue: false hasContentIssue false

Multi-Scale Grafted Polymeric Nanostructures Patterned Bottom-Up by Colloidal Lithography and Initiated Chemical Vapor Deposition (iCVD)

Published online by Cambridge University Press:  01 February 2011

Nathan J. Trujillo
Affiliation:
njt@mit.edu, Massachusetts Institute of Technology, Chemical Engineering, 02139, Massachusetts, United States
Salmaan H. Baxamusa
Affiliation:
baxamusa@mit.edu, Massachusetts Institute of Technology, Chemical Engineering, 02139, Massachusetts, United States
Karen K. Gleason
Affiliation:
kkg@MIT.EDU, United States
Get access

Abstract

Colloidal lithography is a popular, non-conventional process that uses two–dimensional self-assembled monolayer arrays of colloidal nanoparticles as masks for techniques such as etching or sputtering. Initiated Chemical Vapor Deposition (iCVD) is a surface controlled process which offers unprecedented opportunity for producing polymeric layers grafted to substrates with dangling vinyl bonds and patterned through a colloidal template. We demonstrate a generic “bottom-up” process as an inexpensive and simple technique for creating well-ordered arrays of functional patterned polymeric nanostructures. These patterns were produced from thin polymer films of p(butyl acrylate) and p(hydroxyethyl methacrylate), and are robustly tethered to the underlying substrate, as demonstrated by their ability to withstand aggressive solvents. Furthermore, using capillary force lithography, we created topographical templates for large-scale orientation of the nanoparticle assembly. Through this “top-down” approach, for assisting the bottom-up assembly, we present a process for multi-scale patterning of functional polymeric materials, without the need for expensive lithography tools.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, Y., Pepin, A., Electrophoresis 22 (2001) 187207.Google Scholar
2. Deckman, H. W., Dunsmuir, J. H., Applied Physics Letters 41 (1982) 377379.Google Scholar
3. Park, K. H., Lee, S., Koh, K. H., Lacerda, R., Teo, K. B. K., Milne, W. I., Journal of Applied Physics 97 (2005).Google Scholar
4. Wang, X. D., Summers, C. J., Wang, Z. L., Nano Letters 4 (2004) 423426.Google Scholar
5. Huang, Z. P., Carnahan, D. L., Rybczynski, J., Giersig, M., Sennett, M., Wang, D. Z., Wen, J. G., Kempa, K., Ren, Z. F., Applied Physics Letters 82 (2003) 460462.Google Scholar
6. Hatzor-De Picciotto, A., Wissner-Gross, A. D., Lavallee, G., Weiss, P. S., Journal of Experimental Nanoscience 2 (2007) 311.Google Scholar
7. Hulteen, J. C., Treichel, D. A., Smith, M. T., Duval, M. L., Jensen, T. R., Van Duyne, R. P., Journal of Physical Chemistry B 103 (1999) 38543863.Google Scholar
8. Ng, V., Lee, Y. V., Chen, B. T., Adeyeye, A. O., Nanotechnology 13 (2002) 554558.Google Scholar
9. Valsesia, A., Colpo, P., Silvan, M. M., Meziani, T., Ceccone, G., Rossi, F., Nano Letters 4 (2004) 10471050.Google Scholar
10. Ruiz, A., Valsesia, A., Bretagnol, F., Colpo, P., Rossi, F., Nanotechnology 18 (2007).Google Scholar
11. Burkey, D. D., Gleason, K. K., Journal of Applied Physics 93 (2003) 51435150.Google Scholar
12. Rau, C., Kulisch, W., Thin Solid Films 249 (1994) 2837.Google Scholar
13. Grill, A., Journal of Applied Physics 93 (2003) 17851790.Google Scholar
14. Grill, A., Patel, V., Journal of the Electrochemical Society 153 (2006) F169-F175.Google Scholar
15. Martin, T. P., Lau, K. K. S., Chan, K., Mao, Y., Gupta, M., O'Shaughnessy, A. S., Gleason, K. K., Surface & Coatings Technology 201 (2007) 94009405.Google Scholar
16. Tenhaeff, W. E., Gleason, K. K., Advanced Functional Materials 18 (2008) 979992.Google Scholar
17. Wong, T. K. S., Liu, B., Narayanan, B., Ligatchev, V., Kumar, R., Thin Solid Films 462 (2004) 156160.Google Scholar
18. Lau, K. K. S., Gleason, K. K., Macromolecules 39 (2006) 36883694.Google Scholar
19. Cheng, J. Y., Ross, C. A., Smith, H. I., Thomas, E. L., Advanced Materials 18 (2006) 25052521.Google Scholar
20. Shirtcliffe, N. J., Stratmann, M., Grundmeier, G., Surface and Interface Analysis 35 (2003) 799804.Google Scholar
21. Amirfeiz, P., Bengtsson, S., Bergh, M., Zanghellini, E., Borjesson, L., Journal of the Electrochemical Society 147 (2000) 26932698.Google Scholar
22. Xia, Y., Gates, B., Yin, Y., Lu, Y., Advanced Materials 12 (2000) 693713.Google Scholar
23. Chan, K., Gleason, K. K., Langmuir 21 (2005) 89308939.Google Scholar
24. Leterrier, Y., Medico, L., Demarco, F., Manson, J. A. E., Betz, U., Escola, M. F., Olsson, M. K., Atamny, F., Thin Solid Films 460 (2004) 156166.Google Scholar
25. Yin, Y. D., Lu, Y., Gates, B., Xia, Y. N., Journal of the American Chemical Society 123 (2001) 87188729.Google Scholar