Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-23T07:17:54.538Z Has data issue: false hasContentIssue false

A Multiple Slip Plane Model for Crack-Tip Plasticity

Published online by Cambridge University Press:  15 February 2011

S. J. Noronha
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, United Kingdom
S. G. Roberts
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, United Kingdom
A. J. Wilkinson
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, United Kingdom
Get access

Abstract

A single slip plane dislocation dynamics based model for the brittle to ductile transition has been extended to have multiple slip planes around the crack-tip. The crack-tip plastic behaviour is studied for a variety of dislocation source configurations. The results are presented for the case of iron. The effect of modelling the plastic-zone as a single slip plane and as an array of parallel slip planes are compared.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rice, J. R. and Thomson, R., Phil. Mag. 29, 73 (1974).Google Scholar
2. Thomson, R. M. in Physical Metallurgy (4th edition), edited by Cahn, R. W. and Haasen, P., (Elsevier Science, 1996), p. 22072292.Google Scholar
3. Ohr, S. M., Scripta Met. 20, 1465 (1986).Google Scholar
4. Lin, I. H. and Thomson, R., Acta, Metall. 34, 187 (1986).Google Scholar
5. Zhang, T. and Li, J. C. M., Acta Metall. Mater 39, 2739 (1991).Google Scholar
6. Wang, S. and Lee, S., Mater. Sci. Eng. A 130, 1 (1990).Google Scholar
7. Lakshmanan, V. and Li, J. C. M., Mat. Sci. Eng. A 104, 95 (1988).Google Scholar
8. Li, J. C. M., Scripta Met. 20, 1477 (1986).Google Scholar
9. Roberts, S. G., Mat. Sci. Eng. A 234–236, 52 (1997).Google Scholar
10. Roberts, S. G. in Computer Simulation in Materials Science-nano/meso/macroscopic Space and Time Scales, edited by Kirchner, H. O. et al. (NATO ASI Series, Series E (Applied Sciences), 308, Kluwer, Dordrecht, 1996), p. 409433.Google Scholar
11. Hirsch, P. B. and Roberts, S. G., Phil. Trans. R. Soc. (Lond.) A 355, 1991 (1997).Google Scholar
12. Hirsch, P. B. and Roberts, S. G., Phil. Mag. A 64, 55 (1991).Google Scholar
13. Hirsch, P. B., Roberts, S. G. and Samuels, J., Proc. R. Soc. (Lond.) A 421, 25 (1989).Google Scholar
14. Saka, H., Noda, K. and Imura, T., Crystal Lattice Defects 4, 45 (1973).Google Scholar
15. Zielinski, W., Lii, M. J. and Gerberich, W. W., Acta Metall. Mater. 40, 2861 (1992).Google Scholar