Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T23:40:48.778Z Has data issue: false hasContentIssue false

Multilayer Mirrors For X-Ray Lithography

Published online by Cambridge University Press:  15 February 2011

Eberhard Spiller
Affiliation:
Research Center, P.O. Box 218, Yorktown Heights, NY 10598
IBM T. J. Watson
Affiliation:
Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

The applications of multilayer x-ray mirrors to x-ray lithography are reviewed. Topics included are: multilayer performance and characterization, testing and fabrication of large mirrors with figure errors in the Angstrom range, multilayer x-ray masks, and collimators.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Spiller, E., “Multilayer X-Ray Mirrors, a First Step Towards the Custom Design of New Materials,” Mat. Res. Soc. Proc. 56, 419433 (1986).Google Scholar
2 Barbee, T. W., “Multilayer Optics for the soft x-ray and exreme ultraviolet,” MRS Bulletin 15(2), 3744 (1990).Google Scholar
3 Walker, A. B. C., Barbee, T. W., Hoover, R. B. and Lindblom, J. F., “Soft x-ray images of the solar corona with a normal-incidence Cassegrain multilayer telescope,” Science 241, 17811787 (1988).Google Scholar
4 Golub, L., Herant, M., Kalata, K., Lovas, I., Nystrom, G., Spiller, E. and Wilczynski, J, “Sub-Arcsecond Observations of the Solar X-ray Corona,” Nature 344, 842844 (1990).Google Scholar
5 Spiller, E., “Low Loss Reflection Coatings Using Absorbing Materials,” Appl. Phys. Lett. 20, 365367 (1972).CrossRefGoogle Scholar
6 Henke, B. L., Lee, P., Tanaka, T. J., Shimabukuro, R. L. and Fujikawa, B. K., “The Atomic Scattering Factor, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,,” AIP Proc.75, 340,(1981). Atom. Data and Nucl. Tables 27, 1–144 (1982).Google Scholar
7 Henke, B. L., Davis, J. C., Gullikson, E. M. and Perera, R. C. C., A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10000 eV region, Lawrence Berkeley Lab. LBL-26259, Berkeley CA94720, 1988. A personal computer disk with the data can be obtained from E.M. GulliksonGoogle Scholar
8 Rosenbluth, A. E., “Computer search for layer materials that maximize the reflectivity of x-ray multilayers,” Revue Phys. Appl. 23, 15991621 (1988).Google Scholar
9 Schlatmann, R., Keppel, A., Xue, Y. and Wiel, M. J. V. D., “Novel use of ion beams for interface and density modification,” J. X-Ray Sci. Techn. xx, xx–xx (1993).Google Scholar
10 Spiller, E. and Rosenbluth, A. E., “Determination of thickness errors and boundary roughness from the measured performance of a multilayer coating,” Optical Engineering 25, 954963 (1986).CrossRefGoogle Scholar
11 Savage, D. E., Kleiner, J., Schimke, N., Phang, Y., Jankowski, T., Jacobs, J., Kariotis, R. and Lagally, M., “Determination of roughness correlations in multilayer films for xray mirrors,” J. Appl. Phys. 69, 14111424 (1991).Google Scholar
12 Kortright, J. B., “Nonspecular x-ray scattering from multilayer structures,” J. Appl. Phys. 70, 36203625 (1991).Google Scholar
13 Savage, D., Schimke, N., Phang, Y. and Lagally, M., “Interfacial Roughness Correlation in Multilayer Films, Influence of Total Film and Individual Layer Thicknesses,” J. Appl. Phys. 71, 32833293 (1992).Google Scholar
14 Spiller, E., Stearns, D. G. and Krumrey, M., “Multilayer x-ray mirrors: Interfacial roughness, scattering and image quality,” J. Appl. Phys. xxx, xxx (1993).Google Scholar
15 Stearns, D. G., “X-Ray Scattering from Interfacial Roughness in Multilayer Structures,” J. Appl. Phys. 71, 42864296 (1992).Google Scholar
16 Church, E. L., Jenkinson, H. A. and Zavada, J. M., “Relationship between surface scattering and microphotographic scattering,” Opt. Engin. 18, 125136 (1979).Google Scholar
17 Church, E. L. and Takacs, P. Z., “The prediction of BRDFs from surface profile measurements,” Proc. SPIE 1165, 136150 (1989). BRDF= Bidirectional Reflectance Distribution FunctionGoogle Scholar
18 Church, E. L. and Takacs, P. Z., “Statistical and signal processing concepts in surface metrologyts,” Proc. SPIE 645, 107115 (1986).Google Scholar
19 Papoulis, A., Probability, Random Variables, and Stochastic Processes,, (McGraw-Hill, New York, 1984).Google Scholar
20 Stover, j. C., Optical Scattering, (McGraw-Hill, New York, 1990.).Google Scholar
21 Church, E. L. and Takacs, P. Z., “The interpretation of glanzing incidence scattering measuremen ts,” Proc. SPIE 640, 126133 (1986).Google Scholar
22 Bennett, j. M., Elson, J. M. and Rahn, J. P., “Angle resolved scattering: comparison of theory and experiment,” in Thin Film Technologies, Proc. SPIE Vol. 401, edited by Jacobsen, J. R. (1983), p. 234.Google Scholar
23 Bennett, j. M. and Mattson, L., Introduction to surface roughness and scattering, (Optical Soc. Am., Washington, 1990).Google Scholar
24 Harvey, j. E., Zmek, W. P. and Ftaclas, C., “Imaging capabilities of normal incidence x-ray telescopes,” Opt. Engin. 29, 603608 (1990).Google Scholar
25 Sinha, S. K., Sirota, E. B., Garoff, S. and Stanley, H. B., “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B 38, 22972311 (1988).Google Scholar
26 Stearns, D. G., “A stochastic model for thin film growth and erosion,” Appl. Phys. Lett. 62, xxxx–xxxx (1993).Google Scholar
27 Spiller, E., McCorkle, R., Wilczynski, J., Golub, L., Nystrom, G., Takacz, P. and Welch, C., “Normal Incidence Soft X-Ray Telescopes,” Optical Engineering 30, 11091115 (1991).Google Scholar
28 Spiller, E., Wilczynski, J., Stearns, D. G., Golub, L. and Nystrom, G., “Imaging Performance of Multilayer X-Ray Mirrors,” Appl. Phys. Lett. 61, 14811483 (1992).Google Scholar
29 M.Küichel, M., “The new Zeiss interferometer,” Proc. SPIE 1332, 655663 (1990).Google Scholar
30 Glenn, p., “Angstrom level profilometry for sub-millimeter to meter scale surface errors,” Proc. SPIE 1333, 326336 (1990).Google Scholar
31 Kurdock, J. R. and Austin, R., “Correction of optical elements by the addition of evaporated films,” in Physics of Thin Films, edited by Hass, G. and Francombe, M. H. (Academic Press, New York, 1978 ), Vol.10, pp. 261–308.Google Scholar
32 Windt, D. L., “XUV optical constants of single-crystal GaAs and sputtered C, Si, Cr3C2, Mo and W,” Appl. Optics 30, 1525 (1991).Google Scholar
33 Jewell, T. E., Becker, M. M., Bjorkholm, J. E., J.Bokor, J., Eichner, L., Freeman, R. R., Mansfield, W. M., MacDowell, A. A., O'Malley, M. L., Raab, E. L., Silfast, W. T., Szeto, L. H., Tennant, D. M., Waskiewicz, W. K., White, D. L.,, and, “20:1 projection soft x-ray lithography using tri-level resist,” Proc. SPIE 1263, 90–98 (1990).Google Scholar
34 Stearns, D., Rosen, R. and Vernon, S., “Multilayer mirror technology,” Appl. Opt. 32, xxxx–xxxx (1993).Google Scholar
35 Jacobsen, C. and Howells, M., “Projection x-ray lithography using computer generated holograms: a study of compatibility with proximity lithography,” J. Vac. Sci. Technol. B 10, 31773181 (1992).Google Scholar
36 Hampshire Instruments. Private communicationGoogle Scholar
37 Barbee, T. W. Jr., “Application of multilayer structures to the determination of optical constants in the x-ray, soft x-ray and ultra violet spectral ranges,” Mat. Res. Soc. Symp. Proc. 149, 197202 (1989).Google Scholar
38 Braud, j., “Laser cavities and polarization optics for soft x-rays and the extreme ultraviolet,” Appl. Phys. B. (Germany) 50, 205212 (1990).Google Scholar
39 Kumakhov, M. and Komarov, F., “Multiple reflections from surface x-ray optics,” Phys. Reports 191, 289350 (1990).Google Scholar