Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T01:01:35.109Z Has data issue: false hasContentIssue false

Multi-Ion Beam Lithography and Processing Studies

Published online by Cambridge University Press:  29 July 2011

Bill R. Appleton
Affiliation:
NIMET Nanoscale Research Facility, University of Florida, Gainesville, FL. 32611
Sefaattin Tongay
Affiliation:
NIMET Nanoscale Research Facility, University of Florida, Gainesville, FL. 32611
Maxime Lemaitre
Affiliation:
NIMET Nanoscale Research Facility, University of Florida, Gainesville, FL. 32611
Brent Gila
Affiliation:
NIMET Nanoscale Research Facility, University of Florida, Gainesville, FL. 32611
David Hays
Affiliation:
NIMET Nanoscale Research Facility, University of Florida, Gainesville, FL. 32611
Andrew Scheuermann
Affiliation:
NIMET Nanoscale Research Facility, University of Florida, Gainesville, FL. 32611
Joel Fridmann
Affiliation:
Raith USA, Inc., Ronkonkoma, NY, 11779
Get access

Abstract

The University of Florida (UF) have recently collaborated with Raith Inc. to modify Raith’s ion beam lithography, nanofabrication and engineering (ionLiNE) station that utilizes only Ga ions, into a multi-ion beam system (MionLiNE) by adding the capabilities to use liquid metal alloy sources (LMAIS) to access a variety of ions and an EXB filter for mass separation. The MionLiNE modifications discussed below provide a wide range of spatial and temporal precision that can be used to investigate ion solid interactions under extended boundary conditions, as well as for ion lithography and nanofabrication. Here we demonstrate the ion beam lithographic capabilities of the MionLiNE for fabricating patterned arrays of Au and Si nanocrystals, with nanoscale dimensions, in SiO2 substrates, by direct implantation; and show that the same directwrite/maskless-implantation features can be used for in situ fabrication of nanoelectronic devices. Additionally, the spatial and temporal capabilities of the MionLiNE are used to explore the effects of dose rate on the long-standing surface morphological transformation that occurs in ion bombarded Ge.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arnold, G.W., J. Appl. Phys., 46 (1975) 4466.10.1063/1.321422Google Scholar
2. White, C.W., Budai, J.D., Withrow, S.P., Zhu, J.G., Pennycook, S.J., Zuhr, R.A., Hembree, D.M. Jr., Henderswon, D.O., Magruder, R.H., Yacaman, M.J., et al. , Nucl. Instrum. Methods B 127/128, 545 (1997).10.1016/S0168-583X(96)00988-3Google Scholar
3. Zhongning, Dai, Yamamoto, S., Narumi, K., Miuashita, A., and Naramoto, H., Nucl. Instrum. Methods B 149, 108 (1999)Google Scholar
4. Meldrum, A., Honda, S., White, C.W., Zuhr, R.A., Boatner, L. A., J. Mater. Res. 16, 2670 (2001).10.1557/JMR.2001.0366Google Scholar
5. Meldrum, A., Lopez, R., Magruder, R.H., Boatner, L.A., and White, C.W., Topics Appl. Physics 116, 255 (2010).10.1007/978-3-540-88789-8_9Google Scholar
6. Meldrum, A., Hryciw, A., Buchanan, K.S., Beltaos, A.M., Glover, M., Ryan, C.A., Veinot, J.G.C., Optical Materials 27, 812 (2005).10.1016/j.optmat.2004.08.003Google Scholar
7. Takeda, Yoshiko, Plaksin, Oleg A., Wang, Haisong, Kono, Kenichiro, Umeda, Naoli, and Kishimoto, Naoki, Optical Review 13 No. 4, 231 (2006).10.1007/s10043-006-0231-2Google Scholar
8. Skorupa, W., yankov, R.A., Tyschenko, I.E., Frob, H., Bohme, T., and Leo, K., Appl. Phys. Lett., 68, No.17, 2410 (1996).10.1063/1.116150Google Scholar
9. Castagna, M.E., Physica E 16 (2003) 547 10.1016/S1386-9477(02)00644-6Google Scholar
10. Pavesi, L., Optoelectron. Integration Silicon, Proc. SPIE 4997, 206 (2003).10.1117/12.476660Google Scholar
11. Valenta, J., Lalic, N., Linnros, J., Opt. Mater., 17, 45 (2001).10.1016/S0925-3467(01)00019-2Google Scholar
12. Franzo`, G., Coffa, S., Priolo, F., Spinella, C.J., J. Appl. Phys., 81, 2784 (1997).10.1063/1.363935Google Scholar
13. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Lil, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., and Weiss, S., Science 307, 5709, (2005).10.1126/science.1104274Google Scholar
14. Stewart, Sean and Liu, Guojun, Chem. Mater. 11, 1048 (1999).10.1021/cm981009rGoogle Scholar
15. Tan, Weihong, Wang, Kemin, He, Xiaoxiao, Xiaojun, , Zhao, Julia, Drake, Timothy, Wang, Lin, and Bagwe, Rahul P., Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/med. 2000.Google Scholar
16. Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., and Bruchez, M.P., Nat. Biotech., 21, 4146 (2003).10.1038/nbt764Google Scholar
17. Kim, S., Lim, Y.T., Soltesz, E.G., De Grand, A.M., Lee, J., Nakayama, A., Parker, J.A., Mihaljevic, T., Laurence, R.G., Dor, D.M., Cohn, L.H., Bawendi, M.G., and Frangioni, J.V., Nat Biotech 22: 9397 (2004).10.1038/nbt920Google Scholar
18. Beaty, K.S., Meldrum, A., Franck, J.F., Sorge, K., Thompson, J.R., White, C.W., Boatner, L.A., Honda, S., Mater. Res. Soc. Symp. Proc. 703, V9.38.1 (2002)Google Scholar
19. Meldrum, A., Buchanan, K.S., Hryciw, A., White, C.W., Adv. Mater., 16, 31 (2004).10.1002/adma.200305694Google Scholar
20. Appleton, Bill R., Tongay, S., Lemaitre, M., Gila, Brent, Fridmann, Joel, Mazarov, Paul, Sanabia, Jason E., Bauerdick, S., Bruchhaus, Lars, Mimura, Ryo, and Jede, Ralf, Nucl. Instr. and Meth. (in press) doi:10.1016/j.nimb.2011.01.054 Google Scholar
21. Gila, Brent, Appleton, Bill R., Fridmann, Joel,Mazarov, Paul, Sanabia, Jason E., Bauerdick, S., Bruchhaus, Lars, Mimura, Ryo, and Jede, Ralf, CAARI 21: 21st International Conference on the Application of Accelerators in Research and Industry, AIP Conference Proceedings (2011) in press.Google Scholar
22. Lugstein, A., Basnar, B., Bertagnolli, E.; JVST B, 20(6), 2238 (2002).Google Scholar
23. Appleton, B. R., Holland, O. W., Narayan, J., Schow, O. E. III, Williams, J.S., Short, K. T., and Lawson, E. M., Appl. Phys. Lett., 41, 711 (1982).10.1063/1.93643Google Scholar
24. Wilson, I. H., J. Appl. Phys., 53, 1698 (1982).10.1063/1.331636Google Scholar
25. Holland, O.W., Appleton, B.R. and Narayan, J., J. Appl. Phys. 54, 2295, (1983)10.1063/1.332385Google Scholar
26. Lawson, E.M., Short, K.T. and 3.Williams, S.. Appleton, B.R.. Holland, O.W., and 0.Schow, E. III., Nucl. Instr. and Meth., 209/210, 303 (1983).10.1016/0167-5087(83)90815-3Google Scholar
27. Appleton, B.R., Mat. Resc. Soc. Symp. Proc., Volume 27, (1984)Google Scholar
28. Appleton, B.R., Holland, O.W., Poker, D.B., Narayan, J. and Fathy, D., Nucl. Instr. and Meth., B 7/8, 639 (1985).10.1016/0168-583X(85)90447-1Google Scholar
29. Huber, H., Assmann, W., Karamian, S. A., Mücklich, A., Prusseit, W., Gazis, E., Grötzschel, G., Kokkoris, M., Kossionidis, E., Mieskes, H. D., and Vlastou, R., Nucl. Instrum. Methods Phys. Res. B 122, 542 (1997) and references therein.10.1016/S0168-583X(96)00568-XGoogle Scholar
30. Stritzker, B., Elliman, R. G., and Zou, J., Nucl. Instrum. Methods Phys. Res. B 175177, 193 (2001) and references therein.10.1016/S0168-583X(00)00597-8Google Scholar
31. Romano, L., Impellizzeri, G., Tomasello, M.V., Giannazzo, F., Spinella, c., and Grimaldi, M.G., J.of Appl. Phys., 107,084314 (2010) and references therein.10.1063/1.3372757Google Scholar
32. Elliman, R.G., Johnson, S.T., Pogany, A.P., and Williams, J.S., Nucl. Inst. and Methods B 7/8, 310 (1985) and references therein.10.1016/0168-583X(85)90571-3Google Scholar
33. Holland, O.W., Narayan, J., and Fathy, D., Nucl. Inst. and Methods B, 7/8, 243 (1985) and references therein.10.1016/0168-583X(85)90561-0Google Scholar