Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T18:07:40.638Z Has data issue: false hasContentIssue false

Multi-Color Quantum Well Infrared Photodetectors for Mid-, Long-, and Very Long- Wavelength Infrared Applications (invited)

Published online by Cambridge University Press:  21 March 2011

Sheng S. Li*
Affiliation:
Department of Electrical and Computer Engineering University of Florida, Gainesville, FL 32611shengli@eng.ufl.edu
Get access

Abstract

Quantum well infrared photodetectors (QWIPs) have been widely investigated for the 3–5 μm mid-wavelength infrared (MWIR) and 8–12 μm long-wavelength infrared (LWIR) atmospheric spectral windows as well as very long wavelength infrared (VLWIR: λc 14 μm) detection in the past decade. The mature III-V compound semiconductor growth technology and the design flexibility of device structures have led to the rapid development of various QWIP structures for infrared focal plane arrays (FPAs) applications. In addition to the single-color QWIP with narrow bandwidth, the multi-color QWIP required for advanced IR sensing and imaging applications have also been emerged in recent years. Using band gap engineering approach, the multi-color (2, 3, and 4- color) QWIPs using multi-stack quantum wells with different well width and depth and voltage-tunable triple- coupled quantum well (TCQW) structure for detection in the MWIR, LWIR, and VLWIR bands have been demonstrated. In this paper, the design, fabrication, and characterization of a voltage-tunable 2-stack 3-color QWIP for MW/LW/LW IR detection and a 3-stack 3-color QWIP for detection in the water, ozone, and CO2 atmospheric blocking bands are depicted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Emmons, R. B., Hawkins, S. R., and Cuff, K. F., Opt. Eng. 14, 21 (1975).Google Scholar
2. Serzhenko, L. and Shadrin, V. D., Sov. Phys. Semicond. 25, 953 (1991).Google Scholar
3. Chang, L. L., Esaki, L., and Sai-Halaz, G. A., IBM Tech. Discl. Bull. 20, 2019 (1977).Google Scholar
4. Esaki, L. and Tsu, T., IBMJ. Res. Develop. 14, 61 (1970).Google Scholar
5. Esaki, L. and Sakaki, H., IBM Tech. Discl. Bull. 20, 2456 (1977).Google Scholar
6. Coon, D. D. and Karunasiri, R. P. G., Appl. Phys. Lett. 45, 649 (1984).Google Scholar
7. West, L. C. and Eglash, S. J., Appl. Phys. Lett. 46, 1156 (1985).Google Scholar
8. Harwit, A. and Harris, J. S. Jr., Appl. Phys. Lett. 50, 685 (1987).Google Scholar
9. Levine, B. F., Choi, K. K., Bethea, C. G., Walker, J., and Malik, R. J., Appl. Phys. Lett. 50, 1092 (1987).Google Scholar
10. Levine, B. F., Bethea, C. G., Hasnain, G., Shen, V. O., Pelve, E., AB-Bot, R. R., and Hsieh, S. J., Appl. Phys. Lett. 56, 851 (1990).Google Scholar
11. Yu, L. S. and Li, S. S., Appl. Phys. Lett. 59, 1332 (1991).Google Scholar
12. Levine, B. F., J. Appl. Phys. 74, R1 (1993).Google Scholar
13. Gravé, I., Shakouri, A., Kuze, N., and Yariv, A., Appl. Phys. Lett. 60, 2362 (1992).Google Scholar
14. Li, Sheng S. and Tidrow, M. Z., “Quantum Well Infrared Photodetectors,” Handbook of Nanostructured Materials and Nanotechnology, edited by Nalwa, H. S., vol.4, chapter 9, pp.561619, Academic Press, Oct., 1999.Google Scholar
15. Chiang, J. C., Li, Sheng S., Tidrow, M. Z., Ho, P., Tsai, M., and Lee, C. P., Appl. Phys. Lett., vol.69, pp. 24122414, Oct. 1996.Google Scholar
16. Jiang, Xudong, Li, Sheng S., and Tidrow, M. Z., IEEE J. of Quantum Electronics vol.35, pp. 16851692, Nov. 1999.Google Scholar
17. Chiang, J. C., Li, Sheng S., and Singh, A., Appl. Phys. Lett., vol.71, pp. 35463548, Dec. 1997.Google Scholar
18. Dyer, W. R., Electrochemical Society Proceedings Vol.99–22, 425(1999).Google Scholar
19. Ghatak, A. K., Thyagarajan, K. and Shenoy, M. R., IEEE J. Quantum Electronics, 24, 1524 (1988).Google Scholar
20. Liu, H. C., J. Appl. Phys. 73, 3062 (1993).Google Scholar
21. Sarusi, G., Gunapala, S.D., Park, J.S. and Levine, B.F., J. Appl. Phys., 76, 6001 (1994).Google Scholar
22. Levine, B.F., Zussman, A., Kuo, J.M. and De Jong, J., J.Appl. Phys, 71, 5130 (1992).Google Scholar
23. Gunapala, S.D., Bandara, K.M.S.V., Levine, B.F., Sarusi, G., Sivco, D.L. and Cho, A.Y., Appl. Phys. Lett. 64, 2288 (1994).Google Scholar
24. Lee, C.Y., Tidrow, M.Z., Choi, K.K., Chang, W.H., Eastman, L.F., Towner, F.J. and Ahearn, J.S., J. Appl. Phys., 75, 4731 (1994).Google Scholar